ترغب بنشر مسار تعليمي؟ اضغط هنا

According to the sequential accretion model, giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. In order to trigger the accretion of ga s, the core has to grow up to several Earth masses before the gas component of the protoplanetary disc dissipates. We compute the formation of planets, considering the oligarchic regime for the growth of the solid core. Embryos growing in the disc stir their neighbour planetesimals, exciting their relative velocities, which makes accretion more difficult. We compute the excitation state of planetesimals, as a result of stirring by forming planets, and gas-solid interactions. We find that the formation of giant planets is favoured by the accretion of small planetesimals, as their random velocities are more easily damped by the gas drag of the nebula. Moreover, the capture radius of a protoplanet with a (tiny) envelope is also larger for small planetesimals. However, planets migrate as a result of disc-planet angular momentum exchange, with important consequences for their survival: due to the slow growth of a protoplanet in the oligarchic regime, rapid inward type I migration has important implications on intermediate mass planets that have not started yet their runaway accretion phase of gas. Most of these planets are lost in the central star. Surviving planets have either masses below 10 ME or above several Jupiter masses. To form giant planets before the dissipation of the disc, small planetesimals (~ 0.1 km) have to be the major contributors of the solid accretion process. However, the combination of oligarchic growth and fast inward migration leads to the absence of intermediate mass planets. Other processes must therefore be at work in order to explain the population of extrasolar planets presently known.
93 - Andrea Fortier 2010
In this Thesis I studied the formation of the four giant planets of the Solar System in the framework of the nucleated instability hypothesis. The model considers that solids and gas accretion are coupled in an interactive fashion, taking into accoun t detailed constitutive physics for the envelope. The accretion rate of the core corresponds to the oligarchic growth regime. I also considered that accreted planetesimals follow a size distribution. One of the main results of this Thesis is that I was able to compute the formation of Jupiter, Saturn, Uranus and Neptune in less than 10 million years, which is considered to be the protoplanetary disk mean lifetime.
Giant planet formation process is still not completely understood. The current most accepted paradigm, the core instability model, explains several observed properties of the solar systems giant planets but, to date, has faced difficulties to account for a formation time shorter than the observational estimates of protoplanetary disks lifetimes, especially for the cases of Uranus and Neptune. In the context of this model, and considering a recently proposed primordial solar system orbital structure, we performed numerical calculations of giant planet formation. Our results show that if accreted planetesimals follow a size distribution in which most of the mass lies in 30-100 meter sized bodies, Jupiter, Saturn, Uranus and Neptune may have formed according to the nucleated instability scenario. The formation of each planet occurs within the time constraints and they end up with core masses in good agreement with present estimations.
The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulati ons of giant-planet formation that considers a corrected equation of state. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا