ترغب بنشر مسار تعليمي؟ اضغط هنا

286 - A. K. Dupree 2012
The nearest accreting T Tauri star, TW Hya was observed with spectroscopic and photometric measurements simultaneous with a long se gmented exposure using the CHANDRA satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day peri od was present during this time. Absence of a similar periodicity in the H-alpha flux and the total X-ray flux points to a different source of photometric variations. The H-alpha emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H-alpha and H-beta lines is followed by He I (5876A) broadening. Optical veiling increases with a delay of about 2 hours after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows about 2.4 hours later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.
76 - A. K. Dupree , 2009
Spectra of the He I 10830 Angstrom line were obtained with NIRSPEC on the Keck 2 telescope for metal-deficient field giant stars. This line is ubiquitous in stars with T_eff greater than 4500K and M_V fainter than -1.5. Fast outflows are detected fro m the majority of stars and about 40 percent of the outflows have sufficient speed to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from 3X10(-10) to 6X10(-8) solar mass/yr estimated from the Sobolev approximation represent values with evolutionary significance for red giant branch (RGB) and red horizontal branch (RHB) stars. We estimate that 0.2 M_sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M_sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for wind smothering of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا