ترغب بنشر مسار تعليمي؟ اضغط هنا

We present measurements of positions and relative proper motions in the 30 Doradus region of the Large Magellanic Cloud (LMC). We detail the construction of a single-epoch astrometric reference frame, based on specially-designed observations obtained with the two main imaging instruments ACS/WFC and WFC3/UVIS onboard the Hubble Space Telescope (HST). Internal comparisons indicate a sub milli-arc-second (mas) precision in the positions and the presence of semi-periodic systematics with a mean amplitude of ~0.8 mas. We combined these observations with numerous archival images taken with WFPC2 and spanning 17 years. The precision of the resulting proper motions for well-measured stars around the massive cluster R 136 can be as good as ~20 microarcsec/yr, although the true accuracy of proper motions is generally lower due to the residual systematic errors. The observed proper-motion dispersion for our highest-quality measurements is ~0.1 mas/yr. Our catalog of positions and proper motions contains 86,590 stars down to V~25 and over a total area of ~70 square arcmin. We examined the proper motions of 105 relatively bright stars and identified a total of 6 candidate runaway stars. We are able to tentatively confirm the runaway status of star VFTS 285, consistent with the findings from line-of-sight velocities, and to show that this star has likely been ejected from R 136. This study demonstrates that with HST it is now possible to reliably measure proper motions of individual stars in the nearest dwarf galaxies such as the LMC.
88 - A. Bellini 2015
We have imaged with HSTs WFC3/UVIS the central 2.7$times$2.7 arcmin$^2$ region of the giant elliptical galaxy M 87, using the ultraviolet filter F275W. In combination with archival ACS/WFC data taken through the F606W and F814W filters, covering the same field, we have constructed integrated-light UV-optical colors and magnitudes for 1460 objects, most of which are believed to be globular clusters belonging to M 87. The purpose was to ascertain whether the multiple-populations syndrome, ubiquitous among Galactic globular clusters (GCs), exists also among the M 87 family of clusters. To achieve this goal, we sought those GCs with exceptionally blue UV-to-optical colors, because helium-enriched sub-populations produce a horizontal-branch morphology that is well populated at high effective temperature. For comparison, integrated, synthetic UV$-$optical and purely optical colors and magnitudes have been constructed for 45 Galactic GCs, starting from individual-star photometry obtained with the same instruments and the same filters. We identify a small group of M 87 clusters exhibiting a radial UV$-$optical color gradient, representing our best candidate GCs hosting multiple populations with extreme helium content. We also find that the central spatial distribution of the bluer GCs is flattened in a direction parallel to the jet, while the distribution of redder GCs is more spherical. We release to the astronomical community our photometric catalog in F275W, F606W and F814W bands and the high-quality image stacks in the same bands.
76 - M. Libralato 2015
We present a new reduction pipeline for the VIRCAM@VISTA detector and describe the method developed to obtain high-precision astrometry with the VISTA Variables in the Via Lactea (VVV) data set. We derive an accurate geometric-distortion correction u sing as calibration field the globular cluster NGC 5139, and showed that we are able to reach a relative astrometric precision of about 8 mas per coordinate per exposure for well-measured stars over a field of view of more than 1 square degree. This geometric-distortion correction is made available to the community. As a test bed, we chose a field centered around the globular cluster NGC 6656 from the VVV archive and computed proper motions for the stars within. With 45 epochs spread over four years, we show that we are able to achieve a precision of 1.4 mas/yr and to isolate each population observed in the field (cluster, Bulge and Disk) using proper motions. We used proper-motion-selected field stars to measure the motion difference between Galactic disk and bulge stars. Our proper-motion measurements are consistent with UCAC4 and PPMXL, though our errors are much smaller. Models have still difficulties in reproducing the observations in this highly-reddened Galactic regions.
167 - A. Bellini 2014
We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We deter mine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ~60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte-Carlo simulations. We also discuss the PM errors introduced by various systematic effects, and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC 7078 (M 15), which consists of 77,837 stars in the central 2.4 arcmin. We validate the catalog by comparison with existing PM measurements and LOS velocities, and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial/tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science, and will also present the PM catalogs for the other sample clusters.
78 - G. Piotto 2014
In this paper we describe a new UV-initiative HST project (GO-13297) that will complement the existing F606W and F814W database of the ACS Globular Cluster (GC) Treasury by imaging most of its clusters through UV/blue WFC3/UVIS filters F275W, F336W a nd F438W. This magic trio of filters has shown an uncanny ability to disentangle and characterize multiple-population (MP) patterns in GCs in a way that is exquisitely sensitive to C, N, and O abundance variations. Combination of these passbands with those in the optical also gives the best leverage for measuring helium enrichment. The dozen clusters that had previously been observed in these bands exhibit a bewildering variety of MP patterns, and the new survey will map the full variance of the phenomenon. The ubiquity of multiple stellar generations in GCs has made the formation of these cornerstone objects more intriguing than ever; GC formation and the origin of their MPs have now become one and the same problem. In the present paper we will describe the data base and our data reduction strategy, as well as the uses we intend to make of the final photometry, astrometry, and proper motions. We will also present preliminary color-magnitude diagrams from the data so far collected. These diagrams also draw on data from GO-12605 and GO-12311, which served as a pilot project for the present GO-13297.
74 - A. Bellini 2013
We have applied our empirical-PSF-based photometric techniques on a large number of calibration-related WFC3/UVIS UV-B exposures of the core of {omega} Cen, and found a well-defined split in the right part of the white-dwarf cooling sequence (WDCS). The redder sequence is more populated by a factor of ~2. We can explain the separation of the two sequences and their number ratio in terms of the He-normal and He-rich subpopulations that had been previously identified along the cluster main sequence. The blue WDCS is populated by the evolved stars of the He-normal component (~0.55 Msun CO-core DA objects) while the red WDCS hosts the end-products of the He-rich population (~0.46 Msun objects, ~10% CO-core and ~90% He-core WDs). The He-core WDs correspond to He-rich stars that missed the central He-ignition, and we estimate their fraction by analyzing the population ratios along the cluster horizontal branch.
68 - A. Bellini 2013
NGC 6388 and NGC 6441 are two massive Galactic bulge globular clusters which share many properties, including the presence of an extended horizontal branch (HB), quite unexpected because of their high metal content. In this paper we use HSTs WFPC2, A CS, and WFC3 images and present a broad multicolor study of their stellar content, covering all main evolutionary branches. The color-magnitude diagrams (CMDs) give compelling evidence that both clusters host at least two stellar populations, which manifest themselves in different ways. NGC 6388 has a broadened main sequence (MS), a split sub-giant branch (SGB), and a split red giant branch (RGB) that becomes evident above the HB in our data set; its red HB is also split into two branches. NGC 6441 has a split MS, but only an indication of two SGB populations, while the RGB clearly splits in two from the SGB level upward, and no red HB structure. The multicolor analysis of the CMDs confirms that the He difference between the two main stellar populations in the two clusters must be similar. This is observationally supported by the HB morphology, but also confirmed by the color distribution of the stars in the MS optical band CMDs. However, a MS split becomes evident in NGC 6441 using UV colors, but not in NGC 6388, indicating that the chemical patterns of the different populations are different in the two clusters, with C, N, O abundance differences likely playing a major role. We also analyze the radial distribution of the two populations.
73 - Bellini A. 2010
We used archival multi-band Hubble Space Telescope observations obtained with the Wide-Field Camera 3 in the UV-optical channel to present new important observational findings on the color-magnitude diagram (CMD) of the Galactic globular cluster omeg a Centauri. The ultraviolet WFC3 data have been coupled with available WFC/ACS optical-band data. The new CMDs, obtained from the combination of colors coming from eight different bands, disclose an even more complex stellar population than previously identified. This paper discusses the detailed morphology of the CMDs.
569 - A. Bellini Univ. PD 2010
High precision astrometry requires an accurate geometric distortion solution. In this work, we present an average correction for the Blue Camera of the Large Binocular Telescope which enables a relative astrometric precision of ~15 mas for the B_Bess el and V_Bessel broad-band filters. The result of this effort is used in two companion papers: the first to measure the absolute proper motion of the open cluster M67 with respect to the background galaxies; the second to decontaminate the color-magnitude diagram of M67 from field objects, enabling the study of the end of its white dwarf cooling sequence. Many other applications might find this distortion correction useful.
36 - A. Bellini Univ.PD 2009
An accurate geometric distortion solution for the Hubble Space Telescope UVIS-channel of Wide Field Camera 3 is the first step towards its use for high precision astrometry. In this work we present an average correction that enables a relative astrom etric accuracy of ~1 mas (in each axis for well exposed stars) in three broad-band ultraviolet filters (F225W, F275W, and F336W). More data and a better understanding of the instrument are required to constrain the solution to a higher level of accuracy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا