ترغب بنشر مسار تعليمي؟ اضغط هنا

133 - I. Hornyak , A.T. Kruppa 2011
The two-body Coulomb scattering problem is solved using the standard complex scaling method. The explicit enforcement of the scattering boundary condition is avoided. Splitting of the scattering wave function based on the Coulomb modified plane wave is considered. This decomposition leads a three-dimensional Schrodinger equation with source term. Partial wave expansion is carried out and the asymptotic form of the solution is determined. This splitting does not lead to simplification of the scattering boundary condition if complex scaling is invoked. A new splitting carried out only on partial wave level is introduced and this method is proved to be very useful. The scattered part of the wave function tends to zero at large inter-particle distance. This property permits of easy numerical solution: the scattered part of the wave function can be expanded on bound-state type basis. The new method can be applied not only for pure Coulomb potential butin the presence of short range interaction too.
Two methods the complex energy shell model (CXSM) and the complex scaling (CS) approach were used for calculating isobaric analog resonances (IAR) in the Lane model. The IAR parameters calculated by the CXSM and the CS methods were checked against th e parameters extracted from the direct numerical solution of the coupled channel Lane equations (CC). The agreement with the CC results was generally better than 1 keV for both methods and for each partial waves concerned. Similarities and differences of the CXSM and the CS methods are discussed. CXSM offers a direct way to study the configurations of the IAR wave function in contrast to the CS method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا