ترغب بنشر مسار تعليمي؟ اضغط هنا

Avalanche photodiodes (APDs) are the semiconducting analogue of photomultiplier tubes offering very high internal current gain and fast response. APDs are interesting for a wide range of applications in communications1, laser ranging2, biological ima ging3, and medical imaging4 where they offer speed and sensitivity superior to those of classical p-n junction-based photodetectors. The APD principle of operation is based on photocurrent multiplication through impact ionization in reverse-biased p-n junctions. APDs can either operate in proportional mode, where the bias voltage is below breakdown, or in Geiger mode, where the bias voltage is above breakdown. In proportional mode, the multiplication gain is finite, thus allowing for photon energy discrimination, while in Geiger mode of operation the multiplication gain is virtually infinite and a self-sustaining avalanche may be triggered, thus allowing detection of single photons5. Here, we demonstrate APDs based on vertically stacked monolayer MoS2 and p-Si, forming an abrupt p-n heterojunction. With this device, we demonstrate carrier multiplication exceeding 1000. Even though such multiplication factors in APDs are commonly accompanied by high noise, our devices show extremely low noise levels comparable with those in regular photodiodes. These heterostructures allow the realization of simple and inexpensive high-performance and low-noise photon counters based on transition metal dichalcogenides.
We report on the fabrication of field-effect transistors based on single and bilayers of the semiconductor WS2 and the investigation of their electronic transport properties. We find that the doping level strongly depends on the device environment an d that long in-situ annealing drastically improves the contact transparency allowing four-terminal measurements to be performed and the pristine properties of the material to be recovered. Our devices show n-type behavior with high room-temperature on/off current ratio of ~106. They show clear metallic behavior at high charge carrier densities and mobilities as high as ~140 cm2/Vs at low temperatures (above 300 cm2/Vs in the case of bi-layers). In the insulating regime, the devices exhibit variable-range hopping, with a localization length of about 2 nm that starts to increase as the Fermi level enters the conduction band. The promising electronic properties of WS2, comparable to those of single-layer MoS2 and WSe2, together with its strong spin-orbit coupling, make it interesting for future applications in electronic, optical and valleytronic devices.
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics and energy harvesting. Large-area growth methods are needed to open the way to the applications. Whil e significant progress to this goal was made, control over lattice orientation during growth still remains a challenge. This is needed in order to minimize or even avoid the formation of grain boundaries which can be detrimental to electrical, optical and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the uniform growth of high-quality centimeter-scale continuous monolayer MoS2 with control over lattice orientation. Using transmission electron microscopy we show that the monolayer film is composed of coalescing single islands that share a predominant lattice orientation due to an epitaxial growth mechanism. Raman and photoluminescence spectra confirm the high quality of the grown material. Optical absorbance spectra acquired over large areas show new features in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment, we can easily transfer the grown material and fabricate field-effect transistors on SiO2 substrates showing mobility superior to the exfoliated material.
Two-dimensional (2D) materials are a new type of materials under intense study because of their interesting physical properties and wide range of potential applications from nanoelectronics to sensing and photonics. Monolayers of semiconducting trans ition metal dichalcogenides MoS2 or WSe2 have been proposed as promising channel materials for field-effect transistors (FETs). Their high mechanical flexibility, stability and quality coupled with potentially inexpensive production methods offer potential advantages compared to organic and crystalline bulk semiconductors. Due to quantum mechanical confinement, the band gap in monolayer MoS2 is direct in nature, leading to a strong interaction with light that can be exploited for building phototransistors and ultrasensitive photodetectors. Here, we report on the realization of light-emitting diodes based on vertical heterojunctions composed of n-type monolayer MoS2 and p-type silicon. Careful interface engineering allows us to realize diodes showing rectification and light emission from the entire surface of the heterojunction. Electroluminescence spectra show clear signs of direct excitons related to the optical transitions between the conduction and valence bands. Our pn diodes can also operate as solar cells, with typical external quantum efficiency exceeding 4%. Our work opens up the way to more sophisticated optoelectronic devices such as lasers and heterostructure solar cells based on hybrids of two-dimensional (2D) semiconductors and silicon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا