ترغب بنشر مسار تعليمي؟ اضغط هنا

The stochasticity of domain wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nick el, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time-dependence of noise reveals a diffusive random walk of the DWs with an universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.
We have investigated the time-dependent fluctuations in electrical resistance, or noise, in high quality crystalline magnetic nanowires within nanoporous templates. The noise increases exponentially with increasing temperature and magnetic field, and has been analyzed in terms of domain wall depinning within the Neel-Brown framework. The frequency-dependence of noise also indicates a crossover from nondiffusive kinetics to long-range diffusion at higher temperatures, as well as a strong collective depinning, which need to be considered when implementing these nanowires in magnetoelectronic devices.
We experimentally demonstrate that low-frequency electrical noise in silver nanowires is heavily suppressed when the crystal structure of the nanowires is hexagonal closed pack (hcp) rather than face centered cubic (fcc). Using a low-potential electr ochemical method we have grown single crystalline silver nanowires with hcp crystal structure, in which the noise at room temperature is two to six orders of magnitude lower than that in the conventional fcc nanowires of the same diameter. We suggest that motion of dislocations is probably the primary source of electrical noise in metallic nanowires, which is strongly diminished in hcp crystals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا