ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrastive explanations for understanding the behavior of black box models has gained a lot of attention recently as they provide potential for recourse. In this paper, we propose a method Contrastive Attributed explanations for Text (CAT) which pro vides contrastive explanations for natural language text data with a novel twist as we build and exploit attribute classifiers leading to more semantically meaningful explanations. To ensure that our contrastive generated text has the fewest possible edits with respect to the original text, while also being fluent and close to a human generated contrastive, we resort to a minimal perturbation approach regularized using a BERT language model and attribute classifiers trained on available attributes. We show through qualitative examples and a user study that our method not only conveys more insight because of these attributes, but also leads to better quality (contrastive) text. Moreover, quantitatively we show that our method is more efficient than other state-of-the-art methods with it also scoring higher on benchmark metrics such as flip rate, (normalized) Levenstein distance, fluency and content preservation.
Site Reliability Engineers (SREs) play a key role in issue identification and resolution. After an issue is reported, SREs come together in a virtual room (collaboration platform) to triage the issue. While doing so, they leave behind a wealth of inf ormation which can be used later for triaging similar issues. However, usability of the conversations offer challenges due to them being i) noisy and ii) unlabelled. This paper presents a novel approach for issue artefact extraction from the noisy conversations with minimal labelled data. We propose a combination of unsupervised and supervised model with minimum human intervention that leverages domain knowledge to predict artefacts for a small amount of conversation data and use that for fine-tuning an already pretrained language model for artefact prediction on a large amount of conversation data. Experimental results on our dataset show that the proposed ensemble of unsupervised and supervised model is better than using either one of them individually.
The goal behind Domain Adaptation (DA) is to leverage the labeled examples from a source domain so as to infer an accurate model in a target domain where labels are not available or in scarce at the best. A state-of-the-art approach for the DA is due to (Ganin et al. 2016), known as DANN, where they attempt to induce a common representation of source and target domains via adversarial training. This approach requires a large number of labeled examples from the source domain to be able to infer a good model for the target domain. However, in many situations obtaining labels in the source domain is expensive which results in deteriorated performance of DANN and limits its applicability in such scenarios. In this paper, we propose a novel approach to overcome this limitation. In our work, we first establish that DANN reduces the original DA problem into a semi-supervised learning problem over the space of common representation. Next, we propose a learning approach, namely TransDANN, that amalgamates adversarial learning and transductive learning to mitigate the detrimental impact of limited source labels and yields improved performance. Experimental results (both on text and images) show a significant boost in the performance of TransDANN over DANN under such scenarios. We also provide theoretical justification for the performance boost.
30 - Amar Prakash Azad 2011
The goal of this paper is to establish a general approach for analyzing queueing models with repeated inhomogeneous vacations. The server goes on for a vacation if the inactivity prolongs more than the vacation trigger duration. Once the system enter s in vacation mode, it may continue for several consecutive vacations. At the end of a vacation, the server goes on another vacation, possibly with a different probability distribution; if during the previous vacation there have been no arrivals. However the system enters in vacation mode only if the inactivity is persisted beyond defined trigger duration. In order to get an insight on the influence of parameters on the performance, we choose to study a simple M/G/1 queue (Poisson arrivals and general independent service times) which has the advantage of being tractable analytically. The theoretical model is applied to the problem of power saving for mobile devices in which the sleep durations of a device correspond to the vacations of the server. Various system performance metrics such as the frame response time and the economy of energy are derived. A constrained optimization problem is formulated to maximize the economy of energy achieved in power save mode, with constraints as QoS conditions to be met. An illustration of the proposed methods is shown with a WiMAX system scenario to obtain design parameters for better performance. Our analysis allows us not only to optimize the system parameters for a given traffic intensity but also to propose parameters that provide the best performance under worst case conditions.
The paper studies the routing in the network shared by several users. Each user seeks to optimize either its own performance or some combination between its own performance and that of other users, by controlling the routing of its given flow demand. We parameterize the degree of cooperation which allows to cover the fully non-cooperative behavior, the fully cooperative behavior, and even more, the fully altruistic behavior, all these as special cases of the parameters choice. A large part of the work consists in exploring the impact of the degree of cooperation on the equilibrium. Our first finding is to identify multiple Nash equilibria with cooperative behavior that do not occur in the non-cooperative case under the same conditions (cost, demand and topology). We then identify Braess like paradox (in which adding capacity or adding a link to a network results in worse performance to all users) and study the impact of the degree of cooperation on it. We identify another type of paradox in cooperation scenario. We identify that when we increase the degree of cooperation of a user while other users keep unchanged their degree of cooperation, leads to an improvement in performance of that user. We then pursue the exploration and carry it on to the setting of Mixed equilibrium (i.e. some users are non atomic-they have infinitesimally small demand, and other have finite fixed demand). We finally obtain some theoretical results that show that for low degree of cooperation the equilibrium is unique, confirming the results of our numerical study.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا