ترغب بنشر مسار تعليمي؟ اضغط هنا

135 - A. G. Noble 2013
We present an infrared study of a z=0.872 cluster, SpARCS J161314+564930, with the primary aim of distinguishing the dynamical histories of spectroscopically confirmed star-forming members to assess the role of cluster environment. We utilize deep MI PS imaging and a mass-limited sample of 85 spectroscopic members to identify 16 24um-bright sources within the cluster, and measure their 24um star formation rates (SFRs) down to ~6 Msolar/year. Based on their line-of-sight velocities and stellar ages, MIPS cluster members appear to be an infalling population that was recently accreted from the field with minimal environmental dependency on their star formation. However, we identify a double-sequenced distribution of star-forming galaxies amongst the members, with one branch exhibiting declining specific SFRs with mass. The members along this sub-main sequence contain spectral features suggestive of passive galaxies. Using caustic diagrams, we kinematically identify these galaxies as a virialized and/or backsplash population. Moreover, we find a mix of dynamical histories at all projected radii, indicating that standard definitions of environment (i.e., radius and density) are contaminated with recently accreted interlopers, which could contribute to a lack of environmental trends for star-forming galaxies. A cleaner narrative of their dynamical past begins to unfold when using a proxy for accretion histories through profiles of constant (r/r_200)x(Delta v/sigma_v); galaxies accreted at earlier times possess lower values of (r/r_200)x(Delta v/sigma_v) with minimal contamination from the distinct infalling population. Therefore, adopting a time-averaged definition for density (as traced by accretion histories) rather than an instantaneous density yields a depressed specific SFR within the dynamical cluster core.
We present a submillimetre survey of seven high-z galaxy clusters (0.64<z<1.0) using the Submillimetre Common-User Bolometer Array (SCUBA) at 850 and 450 um. The targets, of similar richness and redshift, are selected from the Red-sequence Cluster Su rvey (RCS). We use this sample to investigate the apparent excess of submillimetre source counts in the direction of cluster fields compared to blank fields. The sample consists of three galaxy clusters that exhibit multiple optical arcs due to strong gravitational lensing, and a control group of four clusters with no apparent strong lensing. A tentative excess of 2.7-sigma is seen in the number density of submillimetre luminous galaxies (SMGs) within the lensing cluster fields compared to that in the control group. Ancillary observations at radio, mid-infrared, optical, and X-ray wavelengths allow for the identification of counterparts to many of the SMGs. Utilizing photometric redshifts, we conclude that at least three of the galaxies within the lensing fields have redshifts consistent with the clusters and implied infrared luminosities of ~10^12 Lsol. The existence of SMG cluster members may therefore be boosting source counts in the lensing cluster fields, which might be an effect of the dynamical state of those clusters. However, we find that the removal of potential cluster members from the counts analysis does not entirely eliminate the difference between the cluster samples. We also investigate possible occurrences of lensing between background SMGs and lower-z optical galaxies, though further observations are required to make any conclusive claims. Although the excess counts between the two cluster samples have not been unambiguously accounted for, these results warrant caution for interpreting submillimetre source counts in cluster fields and point source contamination for Sunyaev-Zeldovich surveys. [Abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا