ترغب بنشر مسار تعليمي؟ اضغط هنا

By logging encounters between planetesimals and planets we compute the distribution of encounters in a numerically integrated two planet system that is migrating due to interactions with an exterior planetesimal belt. Capture of an irregular satellit e in orbit about a planet through an exchange reaction with a binary planetesimal is only likely when the binary planetesimal undergoes a slow and close encounter with the planet. In our simulations we find that close and slow encounters between planetesimals and a planet primarily occur with the outermost and not innermost planet. Taking care to consider where a planet orbit crossing binary planetesimal would first be tidally disrupted, we estimate the probability of both tidal disruption and irregular satellite capture. We estimate that the probability that the secondary of a binary planetesimal is captured and becomes an irregular satellite about a Neptune mass outer planet is about 1/100 for binaries with masses and separations similar to transneptunian planetesimal binaries. If young exoplanetary debris disks host a binary planetesimal population then outwards migrating outer planets should host captured irregular satellite populations. We discuss interpretation of emission associated with the exoplanet Fomalhaut b in terms of collisional evolution of a captured irregular satellite population that is replenished due to planetary migration.
We report on an imaging survey with the Spitzer Space Telescope of 62 brightest cluster galaxies with optical line emission. These galaxies are located in the cores of X-ray luminous clusters selected from the ROSAT All-Sky Survey. We find that about half of these sources have a sign of excess infrared emission; 22 objects out of 62 are detected at 70 microns, 18 have 8 to 5.8 micron flux ratios above 1.0 and 28 have 24 to 8 micron flux ratios above 1.0. Altogether 35 of 62 objects in our survey exhibit at least one of these signs of infrared excess. Four galaxies with infrared excesses have a 4.5/3.6 micron flux ratio indicating the presence of hot dust, and/or an unresolved nucleus at 8 microns. Three of these have high measured [OIII](5007A)/Hbeta flux ratios suggesting that these four, Abell 1068, Abell 2146, and Zwicky 2089, and R0821+07, host dusty active galactic nuclei (AGNs). 9 objects (including the four hosting dusty AGNs) have infrared luminosities greater than 10^11 L_sol and so can be classified as luminous infrared galaxies (LIRGs). Excluding the four systems hosting dusty AGNs, the excess mid-infrared emission in the remaining brightest cluster galaxies is likely related to star formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا