ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a theoretical approach to study the transient dynamics and the time-dependent statistics for the Anderson-Holstein model in the regime of strong electron-phonon coupling. For this purpose we adapt a recently introduced diagrammatic approac h to the time domain. The generating function for the time-dependent charge transfer probabilities is evaluated numerically by discretizing the Keldysh contour. The method allows us to analyze the system evolution to the steady state after a sudden connection of the dot to the leads, starting from different initial conditions. Simple analytical results are obtained in the regime of very short times. We study in particular the apparent bistable behavior occurring for strong electron-phonon coupling, small bias voltages and a detuned dot level. The results obtained are in remarkable good agreement with numerically exact results obtained by Quantum Monte Carlo methods. We analyze the waiting time distribution and charge transfer probabilities, showing that only a single electron transfer is responsible for the rich structure found in the short times regime. A universal scaling (independent of the model parameters) is found for the relative amplitude of the higher order current cumulants in the short times regime, starting from an initially empty dot. We finally analyze the convergence to the steady state of the differential conductance and of the differential Fano factor at the inelastic threshold, which exhibits a peculiar oscillatory behavior.
We analyze the spectral density of a single level quantum dot coupled to superconducting leads focusing on the Andreev states appearing within the superconducting gap. We use two complementary approaches: the numerical renormalization group and the H artree-Fock approximation. Our results show the existence of up to four bound states within the gap when the ground state is a spin doublet (pi phase). Furthermore the results demonstrate the reliability of the mean field description within this phase. This is understood from a complete correspondence that can be established between the exact and the mean field quasiparticle excitation spectrum
In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single level Anderson type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of pi-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states which characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا