ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermions in nature come in several types: Dirac, Majorana and Weyl are theoretically thought to form a complete list. Even though Majorana and Weyl fermions have for decades remained experimentally elusive, condensed matter has recently emerged as fe rtile ground for their discovery as low energy excitations of realistic materials. Here we show the existence of yet another particle - a new type of Weyl fermion - that emerges at the boundary between electron and hole pockets in a new type of Weyl semimetal phase of matter. This fermion was missed by Weyl in 1929 due to its breaking of the stringent Lorentz symmetry of high-energy physics. Lorentz invariance however is not present in condensed matter physics, and we predict that an established material, WTe$_2$, is an example of this novel type of topological semimetal hosting the new particle as a low energy excitation around a type-2 Weyl node. This node, although still a protected crossing, has an open, finite-density of states Fermi surface, likely resulting in a plethora physical properties very different from those of standard point-like Fermi surface Weyl points.
Load balancing is a widely accepted technique for performance optimization of scientific applications on parallel architectures. Indeed, balanced applications do not waste processor cycles on waiting at points of synchronization and data exchange, ma ximizing this way the utilization of processors. In this paper, we challenge the universality of the load-balancing approach to optimization of the performance of parallel applications. First, we formulate conditions that should be satisfied by the performance profile of an application in order for the application to achieve its best performance via load balancing. Then we use a real-life scientific application, MPDATA, to demonstrate that its performance profile on a modern parallel architecture, Intel Xeon Phi, significantly deviates from these conditions. Based on this observation, we propose a method of performance optimization of scientific applications through load imbalancing. We also propose an algorithm that finds the optimal, possibly imbalanced, configuration of a data parallel application on a set of homogeneous processors. This algorithm uses functional performance models of the application to find the partitioning that minimizes its computation time but not necessarily balances the load of the processors. We show how to apply this algorithm to optimization of MPDATA on Intel Xeon Phi. Experimental results demonstrate that the performance of this carefully optimized load-balanced application can be further improved by 15% using the proposed load-imbalancing optimization.
Bosonic cascades formed by lattices of equidistant energy levels sustaining radiative transitions between nearest layers are promising for the generation of coherent terahertz radiation. We show how, also for the light emitted by the condensates in t he visible range, they introduce new regimes of emission. Namely, the quantum statistics of bosonic cascades exhibit super-bunching plateaus. This demonstrates further potentialities of bosonic cascade lasers for the engineering of quantum properties of light useful for imaging applications.
Feature representations, both hand-designed and learned ones, are often hard to analyze and interpret, even when they are extracted from visual data. We propose a new approach to study image representations by inverting them with an up-convolutional neural network. We apply the method to shallow representations (HOG, SIFT, LBP), as well as to deep networks. For shallow representations our approach provides significantly better reconstructions than existing methods, revealing that there is surprisingly rich information contained in these features. Inverting a deep network trained on ImageNet provides several insights into the properties of the feature representation learned by the network. Most strikingly, the colors and the rough contours of an image can be reconstructed from activations in higher network layers and even from the predicted class probabilities.
Hardware-aware design and optimization is crucial in exploiting emerging architectures for PDE-based computational fluid dynamics applications. In this work, we study optimizations aimed at acceleration of OpenFOAM-based applications on emerging hybr id heterogeneous platforms. OpenFOAM uses MPI to provide parallel multi-processor functionality, which scales well on homogeneous systems but does not fully utilize the potential per-node performance on hybrid heterogeneous platforms. In our study, we use two OpenFOAM applications, icoFoam and laplacianFoam, both based on Krylov iterative methods. We propose a number of optimizations of the dominant kernel of the Krylov solver, aimed at acceleration of the overall execution of the applications on modern GPU-accelerated heterogeneous platforms. Experimental results show that the proposed hybrid implementation significantly outperforms the state-of-the-art implementation.
We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bou nd states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite bond length. These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.
We have performed fully-kinetic simulations of X-B and O-X-B mode conversion in one and two dimensional setups using the PIC code EPOCH. We have recovered the linear dispersion relation for electron Bernstein waves by employing relatively low amplitu de incoming waves. The setups presented here can be used to study non-linear regimes of X-B and O-X-B mode conversion.
We investigate the correlations of mutual positions of charge density waves nodes in side-by-side placed InAs nanowires in presence of a conductive atomic force microscope tip served as a mobile gate at helium temperatures. Scanning gate microscopy s cans demonstrate mutual correlation of positions of charge density waves nodes of two wires. A general mutual shift of the nodes positions and crystal lattice mismatch defect were observed. These observations demonstrate the crucial role of Coulomb interaction in formation of charge density waves in InAs nanowires.
In this methodological note we discuss several topics related to interpretation of some basic cosmological principles. We demonstrate that one of the key points is the usage of synchronous reference frames. The Friedmann-Robertson-Walker one is the m ost known example of them. We describe how different quantities behave in this frame. Special attention is paid to potentially observable parameters. We discuss different variants for choosing measures of velocity and acceleration representing the Hubble flow, and present illustrative calculations of apparent acceleration in flat $Lambda CDM$ model for various epochs. We generalize description of the tethered galaxies problem for different velocity measures and equations of state, and illustrate time behavior of velocities and redshifts in the $Lambda CDM$ model.
A metal-insulator transition (MIT) in BiFeO$_3$ under pressure was investigated by a method combining Generalized Gradient Corrected Local Density Approximation with Dynamical Mean-Field Theory (GGA+DMFT). Our paramagnetic calculations are found to b e in agreement with experimental phase diagram: Magnetic and spectral properties of BiFeO3 at ambient and high pressures were calculated for three experimental crystal structures $R3c$, $Pbnm$ and $Pmbar{3}m$. At ambient pressure in the $R3c$ phase, an insulating gap of 1.2 eV was obtained in good agreement with its experimental value. Both $R3c$ and $Pbnm$ phases have a metal-insulator transition that occurs simultaneously with a high-spin (HS) to low-spin (LS) transition. The critical pressure for the $Pbnm$ phase is 25-33 GPa that agrees well with the experimental observations. The high pressure and temperature $Pmbar{3}m$ phase exhibits a metallic behavior observed experimentally as well as in our calculations in the whole range of considered pressures and undergoes to the LS state at 33 GPa where a $Pbnm$ to $Pmbar{3}m$ transition is experimentally observed. The antiferromagnetic GGA+DMFT calculations carried out for the $Pbnm$ structure result in simultaneous MIT and HS-LS transitions at a critical pressure of 43 GPa in agreement with the experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا