ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed storage systems provide reliable access to data through redundancy spread over individually unreliable nodes. Application scenarios include data centers, peer-to-peer storage systems, and storage in wireless networks. Storing data using a n erasure code, in fragments spread across nodes, requires less redundancy than simple replication for the same level of reliability. However, since fragments must be periodically replaced as nodes fail, a key question is how to generate encoded fragments in a distributed way while transferring as little data as possible across the network. For an erasure coded system, a common practice to repair from a node failure is for a new node to download subsets of data stored at a number of surviving nodes, reconstruct a lost coded block using the downloaded data, and store it at the new node. We show that this procedure is sub-optimal. We introduce the notion of regenerating codes, which allow a new node to download emph{functions} of the stored data from the surviving nodes. We show that regenerating codes can significantly reduce the repair bandwidth. Further, we show that there is a fundamental tradeoff between storage and repair bandwidth which we theoretically characterize using flow arguments on an appropriately constructed graph. By invoking constructive results in network coding, we introduce regenerating codes that can achieve any point in this optimal tradeoff.
Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repea tedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $epsilon$ using $O(frac{n^{1.5}}{sqrt{log n}} log epsilon^{-1})$ radio transmissions, which yields a $sqrt{frac{n}{log n}}$ factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.
In this paper we investigate the structure of the fundamental polytope used in the Linear Programming decoding introduced by Feldman, Karger and Wainwright. We begin by showing that for expander codes, every fractional pseudocodeword always has at le ast a constant fraction of non-integral bits. We then prove that for expander codes, the active set of any fractional pseudocodeword is smaller by a constant fraction than the active set of any codeword. We further exploit these geometrical properties to devise an improved decoding algorithm with the same complexity order as LP decoding that provably performs better, for any blocklength. It proceeds by guessing facets of the polytope, and then resolving the linear program on these facets. While the LP decoder succeeds only if the ML codeword has the highest likelihood over all pseudocodewords, we prove that the proposed algorithm, when applied to suitable expander codes, succeeds unless there exist a certain number of pseudocodewords, all adjacent to the ML codeword on the LP decoding polytope, and with higher likelihood than the ML codeword. We then describe an extended algorithm, still with polynomial complexity, that succeeds as long as there are at most polynomially many pseudocodewords above the ML codeword.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا