ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate the amplitude of the rare flavour-changing neutral-current decay $Bto piell^+ell^-$ at large recoil of the pion. The nonlocal contributions in which the weak effective operators are combined with the electromagnetic lepton-pair emission are systematically taken into account. These amplitudes are calculated at off-shell values of the lepton-pair mass squared, $q^2<0$, employing the operator-product expansion, QCD factorization and light-cone sum rules. The results are fitted to hadronic dispersion relations in $q^2$, including the intermediate vector meson contributions. The dispersion relations are then used in the physical region $q^2>0$. Our main result is the process-dependent addition $Delta C^{(Bpi)}_9(q^2)$ to the Wilson coefficient $C_9$ obtained at $4m_ell^2<q^2lesssim m_{J/psi}^2$. Together with the $Bto pi$ form factors from light-cone sum rules, this quantity is used to predict the differential rate, direct CP-asymmetry and isospin asymmetry in $Bto piell^+ell^-$. We also estimate the total rate of the rare decay $Bto pi ubar{ u}$.
In these lectures, I present several important applications of QCD sum rules to the decay processes involving heavy-flavour hadrons. The first lecture is introductory. As a study case, the sum rules for decay constants of the heavy-light mesons are c onsidered. They are relevant for the leptonic decays of $B$-mesons. In the second lecture I describe the method of QCD light-cone sum rules used to calculate the heavy-to-light form factors at large hadronic recoil, such as the $Bto pi ell u_ell$ form factors. In the third lecture, the nonlocal hadronic amplitudes in the flavour-changing neutral current decays $Bto K^{(*)}ellell$ are discussed. Light-cone sum rules provide important nonfactorizable contributions to these amplitudes.
116 - V.M.Braun , A.Khodjamirian 2012
The $Bto gamma ell u_ell$ decay at large energies of the photon receives a numerically important soft-overlap contribution which is formally of the next-to-leading order in the expansion in the inverse photon energy. We point out that this contribut ion can be calculated within the framework of heavy-quark expansion and soft-collinear effective theory, making use of dispersion relations and quark-hadron duality. The soft-overlap contribution is obtained in a full analogy with the similar contribution to the $gamma^* gamma to pi$ transition form factor. This result strengthens the case for using the $Bto gamma ell u_ell$ decay to constrain the $B$-meson distribution amplitude and determine its most important parameter, the inverse moment $lambda_B$.
We employ the $Btopi$ form factors obtained from QCD light-cone sum rules and calculate the $Bto pi ell u_l$ width ($ell=e,mu$) in units of $1/|V_{ub}|^2$, integrated over the region of accessible momentum transfers, $0leq q^2leq 12.0 ~GeV^2$. Using the most recent BABAR-collaboration measurements we extract $|V_{ub}|=(3.50^{+0.38}_{-0.33}big|_{th.}pm 0.11 big|_{exp.})times 10^{-3}$. The sum rule results for the form factors, taken as an input for a $z$-series parameterization, yield the $q^2$-shape in the whole semileptonic region of $Bto piell u_ell$. We also present the charged lepton energy spectrum in this decay. Furthermore, the current situation with $Bto tau u_tau$ is discussed from the QCD point of view. We suggest to use the ratio of the $Bto pi tau u_tau$ and $Bto piell u_l ~(ell =mu,e) $ widths as an additional test of Standard Model. The sensitivity of this observable to new physics is illustrated by including a charged Higgs-boson contribution in the semileptonic decay amplitude.
I overview the hadronic input for the exclusive flavour-changing neutral-current $B$-decays with a vector ($V=K^*,rho$) or pseudoscalar ($P=K,pi$) meson in the final state. After presenting the current status of $Bto P,V$ form factors, I discuss the estimate of the charm-loop effect in $Bto K^{(*)} ell^+ell^-$ and $Bto K^* gamma$.
77 - A. Khodjamirian 2009
I discuss recent applications of QCD light-cone sum rules to various form factors of pseudoscalar mesons. In this approach both soft and hard contributions to the form factors are taken into account. Combining QCD calculation with the analyticity of the form factors, one enlarges the region of accessible momentum transfers.
We present a new calculation of the $Dtopi$ and $D to K$ form factors from QCD light-cone sum rules. The $overline{MS}$ scheme for the $c$-quark mass is used and the input parameters are updated. The results are $f^+_{Dpi}(0)= 0.67^{+0.10}_{-0.07}$, $f^+_{DK}(0)=0.75^{+0.11}_{-0.08}$ and $f^+_{Dpi}(0)/f^+_{DK}(0)=0.88 pm 0.05$. Combining the calculated form factors with the latest CLEO data, we obtain $|V_{cd}|=0.225pm 0.005 pm 0.003 ^{+0.016}_{-0.012}$ and $|V_{cd}|/|V_{cs}|= 0.236pm 0.006pm 0.003pm 0.013$ where the first and second errors are of experimental origin and the third error is due to the estimated uncertainties of our calculation. We also evaluate the form factors $f^-_{Dpi}$ and $f^-_{DK}$ and predict the slope parameters at $q^2=0$. Furthermore, calculating the form factors from the sum rules at $q^2<0$, we fit them to various parameterizations. After analytic continuation, the shape of the $Dto pi,K $ form factors in the whole semileptonic region is reproduced, in a good agreement with experiment.
We derive new QCD sum rules for $Bto D$ and $Bto D^*$ form factors. The underlying correlation functions are expanded near the light-cone in terms of $B$-meson distribution amplitudes defined in HQET, whereas the $c$-quark mass is kept finite. The le ading-order contributions of two- and three-particle distribution amplitudes are taken into account. From the resulting light-cone sum rules we calculate all $Bto Dst $ form factors in the region of small momentum transfer (maximal recoil). In the infinite heavy-quark mass limit the sum rules reduce to a single expression for the Isgur-Wise function. We compare our predictions with the form factors extracted from experimental $Bto Dst l u_l$ decay rates fitted to dispersive parameterizations.
The correlation function of two pseudoscalar charmed quark currents with a positive hadronic spectral density is employed to obtain upper bounds on the decay constants of $D$ and $D_s$ mesons. Including all known terms of the operator-product-expansi on of this correlation function in QCD and taking into account the estimated uncertainties, we obtain $f_{D}<230 $ MeV and $f_{D_s}<270$ MeV. Comparison with the decay constants determined from $Dto l u_l$ and $D_sto l u_l$ measurements, reveals a tension between the bound and current experimental value of $f_{D_s}$.
We reconsider and update the QCD light-cone sum rules for $Bto pi$ form factors. The gluon radiative corrections to the twist-2 and twist-3 terms in the correlation functions are calculated. The $bar{MS}$ $b$-quark mass is employed, instead of the on e-loop pole mass used in the previous analyses. The light-cone sum rule for $f^+_{Bpi}(q^2)$ is fitted to the measured $q^2$-distribution in $Bto pi l u_l$, fixing the input parameters with the largest uncertainty: the Gegenbauer moments of the pion distribution amplitude. For the $Bto pi$ vector form factor at zero momentum transfer we predict $f^+_{Bpi}(0)= 0.26^{+0.04}_{-0.03}$. Combining it with the value of the product $|V_{ub}f^+_{Bpi}(0)|$ extracted from experiment, we obtain $|V_{ub}|=(3.5pm 0.4pm 0.2pm 0.1) times 10^{-3}$. In addition, the scalar and penguin $Bto pi$ form factors $f^0_{Bpi}(q^2)$ and $f^T_{Bpi}(q^2)$ are calculated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا