ترغب بنشر مسار تعليمي؟ اضغط هنا

36 - A. Kartavtsev , G. Raffelt , 2015
Neutrinos propagating in media (matter and electromagnetic fields) undergo flavor and helicity oscillations, where helicity transitions are instigated both by electromagnetic fields and matter currents. In addition, it has been shown that correlation s between neutrinos and antineutrinos of opposite momentum can build up in anisotropic media. We re-derive the neutrino equations of motion in the mean-field approximation for homogeneous yet anisotropic media, confirming previous results except for a small correction in the Majorana case. Furthermore, we derive the mean-field Hamiltonian induced by neutrino electromagnetic interactions. We also provide a phenomenological discussion of pair correlations in comparison with helicity correlations.
We obtain wave functionals of free real and complex scalar fields on a 1+1 dimensional lattice by explicitly calculating the path integral for transition from one field configuration to another. The obtained expressions are useful for cross-checking quality of approximations schemes used to study self-interacting fields on the lattice.
According to the Goldstone theorem a scalar theory with a spontaneously broken global symmetry contains strictly massless states. In this letter we identify a loophole in the current-algebra proof of the theorem. Therefore, the question whether in mo dels with Mexican hat potential the tangential excitations are strictly massless or are just almost massless as compared to the radial ones remains open. We also argue that mass of the tangential excitations approaches zero even if the symmetry is not spontaneously broken but a combination of the field components invariant under the symmetry transformations acquires a large vacuum expectation value.
We study the impact of effective thermal masses and widths on resonant leptogenesis. We identify two distinct possibilities which we refer to as crossing and runaway regimes. In the runaway regime the mass difference grows monotonously with temperatu re, whereas it initially decreases in the crossing regime, such that the effective masses become equal at some temperature. Following the conventional logic the source of the asymmetry would vanish in the latter case. Using non-equilibrium quantum field theory, we analytically demonstrate that the vanishing of the difference of the effective masses does however neither imply a suppression nor a strong enhancement of the source for the lepton asymmetry. In the vicinity of the crossing point the asymmetry calculated in an (improved) Boltzmann limit develops a spurious peak, which signals the breakdown of the quasiparticle approximation. In the exact result this spurious enhancement is compensated by coherent transitions between the two mass shells. Despite the breakdown of the quasiparticle approximation off-shell contributions remain negligibly small even at the crossing point.
In this work we study thermal leptogenesis using non-equilibrium quantum field theory. Starting from fundamental equations for correlators of the quantum fields we describe the steps necessary to obtain quantum kinetic equations for quasiparticles. T hese can easily be compared to conventional results and overcome conceptional problems inherent in the canonical approach. Beyond CP-violating decays we include also those scattering processes which are tightly related to the decays in a consistent approximation of fourth order in the Yukawa couplings. It is demonstrated explicitly how the S-matrix elements for the scattering processes in the conventional approach are related to two- and three-loop contributions to the effective action. We derive effective decay and scattering amplitudes taking medium corrections and thermal masses into account. In this context we also investigate CP-violating Higgs decay within the same formalism. From the kinetic equations we derive rate equations for the lepton asymmetry improved in that they include quantum-statistical effects and medium corrections to the quasiparticle properties.
To calculate the baryon asymmetry in the baryogenesis via leptogenesis scenario one usually uses Boltzmann equations with transition amplitudes computed in vacuum. However, the hot and dense medium and, potentially, the expansion of the universe can affect the collision terms and hence the generated asymmetry. In this paper we derive the Boltzmann equation in the curved space-time from (first-principle) Kadanoff-Baym equations. As one expects from general considerations, the derived equations are covariant generalizations of the corresponding equations in Minkowski space-time. We find that, after the necessary approximations have been performed, only the left-hand side of the Boltzmann equation depends on the space-time metric. The amplitudes in the collision term on the right--hand side are independent of the metric, which justifies earlier calculations where this has been assumed implicitly. At tree level, the matrix elements coincide with those computed in vacuum. However, the loop contributions involve additional integrals over the the distribution function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا