ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the evolution of the Colour-Magnitude Relation (CMR) and Luminosity Function (LF) at 0.4<z<1.3 from the VIMOS Public Extragalactic Redshift Survey (VIPERS) using ~45,000 galaxies with precise spectroscopic redshifts down to i_AB<22.5 over ~10.32 deg^2 in two fields. From z=0.5 to z=1.3 the LF and CMR are well defined for different galaxy populations and M^*_B evolves by ~1.04(1.09)+/-0.06(0.10) mag for the total (red) galaxy sample. We compare different criteria for selecting early-type galaxies (ETGs): (1) fixed cut in rest-frame (U-V) colours, (2) evolving cut in (U-V) colours, (3) rest-frame (NUV-r)-(r-K) colour selection, and (4) SED classification. Regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4<z<1.3 we find a moderate evolution of the RS intercept of Delta(U-V)=0.28+/-0.14 mag, favouring exponentially declining star formation (SF) histories with SF truncation at 1.7<=z<=2.3. Together with the rise in the ETG number density by 0.64 dex since z=1, this suggests a rapid build-up of massive galaxies (M>10^11 M_sun) and expeditious RS formation over a short period of ~1.5 Gyr starting before z=1. This is supported by the detection of ongoing SF in ETGs at 0.9<z<1.0, in contrast with the quiescent red stellar populations of ETGs at 0.5<z<0.6. There is an increase in the observed CMR scatter with redshift, two times larger than in galaxy clusters and at variance with theoretical models. We discuss possible physical mechanisms that support the observed evolution of the red galaxy population. Our findings point out that massive galaxies have experienced a sharp SF quenching at z~1 with only limited additional merging. In contrast, less-massive galaxies experience a mix of SF truncation and minor mergers which build-up the low- and intermediate-mass end of the CMR.
68 - Alexander Fritz 2009
We analyse the kinematic and chemical evolution of 203 distant spheroidal (elliptical and S0) galaxies at 0.2<z<0.8 which are located in different environments (rich clusters, low-mass clusters and in the field). VLT/FORS and CAHA/MOSCA spectra with intermediate-resolution have been acquired to measure the internal kinematics and stellar populations of the galaxies. From HST/ACS and WFPC2 imaging, surface brightness profiles and structural parameters were derived for half of the galaxy sample. The scaling relations of the Faber-Jackson relation and Kormendy relation as well as the Fundamental Plane indicate a moderate evolution for the whole galaxy population in each density regime. In all environments, S0 galaxies show a faster evolution than elliptical galaxies. For the cluster galaxies a slight radial dependence of the evolution out to one virial radius is found. Dividing the samples with respect to their mass, a mass dependent evolution with a stronger evolution of lower-mass galaxies (M<2x10^{11} M_{sun}) is detected. Evidence for recent star formation is provided by blue colours and weak OII emission or strong Hdelta absorption features in the spectra. The results are consistent with a down-sizing formation scenario which is independent from the environment of the galaxies.
We explore the properties of 24 field early-type galaxies at 0.20<z<0.75 down to M_B<=-19.30 in a sample extracted from the FORS Deep Field and the William Herschel Deep Field. High S/N intermediate-resolution VLT spectroscopy was complemented by dee p high-resolution HST/ACS imaging and additional ground-based multi-band photometry. To clarify the low level of star formation (SF) detected in some galaxies, we identify the amount of AGN activity in our sample using archive data of Chandra and XMM-Newton X-ray surveys. The B and K-band Faber-Jackson relations and the Fundamental Plane display a moderate evolution for the field early-type galaxies. Lenticular (S0) galaxies feature on average a stronger luminosity evolution and bluer rest-frame colours which can be explained that they comprise more diverse stellar populations compared to elliptical galaxies. The evolution of the FP can be interpreted as an average change in the dynamical mass-to-light ratio of our galaxies as <Delta log{(M/L_B)}/z>=-0.74pm0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, that gets support by recent studies of field galaxies up to z~1. Independent evidence for recent SF activity is provided by spectroscopic (OII em., Hdelta) and photometric (rest-frame colors) diagnostics. Based on the Hdelta absorption feature we detect a weak residual SF for galaxies that accounts for 5%-10% in the total stellar mass of these galaxies. The co-evolution in the luminosity and mass of our galaxies favours a downsizing formation process. We find some evidence that our galaxies experienced a period of SF quenching, possible triggered by AGN activity that is in good agreement with recent results on both observational and theoretical side. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا