ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the effect of disorder on the London penetration depth in iron-based superconductors. The theory is based on a two-band model with quasi-two-dimensional Fermi surfaces, which allows for the coexistence region in the phase diagram between mag netic and superconducting states in the presence of intraband and interband scattering. Within the quasiclassical approximation we derive and solve Eilenbergers equations, which include a weak external magnetic field, and provide analytical expressions for the penetration depth in the various limiting cases. A complete numerical analysis of the doping and temperature dependence of the London penetration depth reveals the crucial effect of disorder scattering, which is especially pronounced in the coexistence phase. The experimental implications of our results are discussed.
We develop a theory of thermal transport of weakly interacting electrons in quantum wires. Unlike higher-dimensional systems, a one-dimensional electron gas requires three-particle collisions for energy relaxation. The fastest relaxation is provided by the intrabranch scattering of comoving electrons which establishes a partially equilibrated form of the distribution function. The thermal conductance is governed by the slower interbranch processes which enable energy exchange between counterpropagating particles. We derive an analytic expression for the thermal conductance of interacting electrons valid for arbitrary relation between the wire length and electron thermalization length. We find that in sufficiently long wires the interaction-induced correction to the thermal conductance saturates to an interaction-independent value.
We study light diffraction in the periodically modulated ultrathin metal films both analytically and numerically. Without modulation these films are almost transparent. The periodicity results in the anomalous effects, such as suppression of the tran smittance accompanied by a strong enhancement of the absorptivity and specular reflectivity, due to excitation of the surface plasmon polaritons. These phenomena are opposite to the widely known enhanced transparency of periodically modulated optically thick metal films. Our theoretical analysis can be a starting point for the experimental investigation of these intriguing phenomena.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا