ترغب بنشر مسار تعليمي؟ اضغط هنا

Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted sticti on between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.
We propose an optomechanical structure consisting of a photonic-crystal (holey) membrane suspended above a layered silicon-on-insulator substrate in which resonant bonding/antibonding optical forces created by externally incident light from above ena ble all-optical control and actuation of stiction effects induced by the Casimir force. In this way, one can control how the Casimir force is expressed in the mechanical dynamics of the membrane, not by changing the Casimir force directly but by optically modifying the geometry and counteracting the mechanical spring constant to bring the system in or out of regimes where Casimir physics dominate. The same optical response (reflection spectrum) of the membrane to the incident light can be exploited to accurately measure the effects of the Casimir force on the equilibrium separation of the membrane.
We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of guided-wave resonances that was first predicted in symmetric systems. Our focus is a geometry consisting of a photonic-crystal (holey) membrane suspended above an unpatterned layered substrate, supporting planar waveguide modes that can couple via the periodic modulation of the holey membrane. Asymmetric geometries have a clear advantage in ease of fabrication and experimental characterization compared to symmetric double-membrane structures. We show that the asymmetry can also lead to unusual behavior in the force magnitudes of a bonding/antibonding pair as the membrane separation changes, including nonmonotonic dependences on the separation. We propose a computational method that obtains the entire force spectrum via a single time-domain simulation, by Fourier-transforming the response to a short pulse and thereby obtaining the frequency-dependent stress tensor. We point out that by operating with two, instead of a single frequency, these evanescent forces can be exploited to tune the spring constant of the membrane without changing its equilibrium separation.
We propose a method of achieving large temperature sensitivity in the Casimir force that involves measuring the stable separation between dielectric objects immersed in fluid. We study the Casimir force between slabs and spheres using realistic mater ial models, and find large > 2nm/K variations in their stable separations (hundreds of nanometers) near room temperature. In addition, we analyze the effects of Brownian motion on suspended objects, and show that the average separation is also sensitive to changes in temperature . Finally, this approach also leads to rich qualitative phenomena, such as irreversible transitions, from suspension to stiction, as the temperature is varied.
We present a scheme for obtaining stable Casimir suspension of dielectric nontouching objects immersed in a fluid, validated here in various geometries consisting of ethanol-separated dielectric spheres and semi-infinite slabs. Stability is induced b y the dispersion properties of real dielectric (monolithic) materials. A consequence of this effect is the possibility of stable configurations (clusters) of compact objects, which we illustrate via a molecular two-sphere dicluster geometry consiting of two bound spheres levitated above a gold slab. Our calculations also reveal a strong interplay between material and geometric dispersion, and this is exemplified by the qualitatively different stability behavior observed in planar versus spherical geometries.
Using an exact numerical method for finite nonplanar objects, we demonstrate a stable mechanical suspension of a silica cylinder within a metallic cylinder separated by ethanol, via a repulsive Casimir force between the silica and the metal. We inves tigate cylinders with both circular and square cross sections, and show that the latter exhibit a stable orientation as well as a stable position, via a method to compute Casimir torques for finite objects. Furthermore, the stable orientation of the square cylinder is shown to undergo an unusual 45 degrees transition as a function of the separation lengthscale, which is explained as a consequence of material dispersion.
Previous methods for determining photonic quasicrystal (PQC) spectra have relied on the use of large supercells to compute the eigenfrequencies and/or local density of states (LDOS). In this manuscript, we present a method by which the energy spectru m and the eigenstates of a PQC can be obtained by solving Maxwells equations in higher dimensions for any PQC defined by the standard cut-and-project construction, to which a generalization of Blochs theorem applies. In addition, we demonstrate how one can compute band structures with defect states in the higher-dimensional superspace with no additional computational cost. As a proof of concept, these general ideas are demonstrated for the simple case of one-dimensional quasicrystals, which can also be solved by simple transfer-matrix techniques.
We present a method of computing Casimir forces for arbitrary geometries, with any desired accuracy, that can directly exploit the efficiency of standard numerical-electromagnetism techniques. Using the simplest possible finite-difference implementat ion of this approach, we obtain both agreement with past results for cylinder-plate geometries, and also present results for new geometries. In particular, we examine a piston-like problem involving two dielectric and metallic squares sliding between two metallic walls, in two and three dimensions, respectively, and demonstrate non-additive and non-monotonic changes in the force due to these lateral walls.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا