ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first direct and robust measurement of the faint-end slope of the Lyman-alpha emitter (LAE) luminosity function at z = 5.7. Candidate LAEs from a low-spectral-resolution blind search with IMACS on Magellan-Baade were targeted at higher resolution to distinguish high redshift LAEs from foreground galaxies. All but 2 of our 42 single-emission-line systems have flux F $< 2.0 times 10^{-17}$ ergs s$^{-1}$ cm$^{-2}$, making these the faintest emission-lines observed for a z = 5.7 sample with known completeness, an essential property for determining the faint end slope of the LAE luminosity function. We find 13 LAEs as compared to 29 foreground galaxies, in very good agreement with the modeled foreground counts predicted in Dressler et al. (2011a) that had been used to estimate a faint-end slope of $alpha$ = -2.0 for the LAE luminosity function. A 32% LAE fraction, LAE/(LAE+foreground), within the flux interval F = $2-20 times 10^{-18}$ ergs s$^{-1}$ cm$^{-2}$, constrains the faint end slope of the luminosity function to -2.35 < $alpha$ < -1.95 (1-$sigma$). We show how this steep LF should provide, to the limit of our observations, more than 20% of the flux necessary to maintain ionization at z=5.7, with a factor-of-ten extrapolation in flux reaching more than 55%. This is in addition to a comparable contribution from Lyman Break Galaxies M$_{UV} le$ -18. We suggest that this bodes well for a sufficient supply of Lyman continuum photons by similar, low-mass star forming galaxies within the reionization epoch at z $approx$ 7, only 250 Myr earlier.
The IMACS Cluster Building Survey (ICBS) provides spectra of ~2200 galaxies 0.31<z<0.54 in 5 rich clusters (R <= 5 Mpc) and the field. Infalling, dynamically cold groups with tens of members account for approximately half of the supercluster populati on, contributing to a growth in cluster mass of ~100% by today. The ICBS spectra distinguish non-starforming (PAS) and poststarburst (PSB) from starforming galaxies -- continuously starforming (CSF) or starbursts, (SBH or SBO), identified by anomalously strong H-delta absorption or [O II] emission. For the infalling cluster groups and similar field groups, we find a correlation between PAS+PSB fraction and group mass, indicating substantial preprocessing through quenching mechanisms that can turn starforming galaxies into passive galaxies without the unique environment of rich clusters. SBH + SBO starburst galaxies are common, and they maintain an approximately constant ratio (SBH+SBO)/CSF ~ 25% in all environments -- from field, to groups, to rich clusters. Similarly, while PSB galaxies strongly favor denser environments, PSB/PAS ~ 10-20% for all environments. This result, and their timescale tau < 500 Myr, indicates that starbursts are not signatures of a quenching mechanism that produces the majority of passive galaxies. We suggest instead that starbursts and poststarbursts signal minor mergers and accretions, in starforming and passive galaxies, respectively, and that the principal mechanisms for producing passive systems are (1) early major mergers, for elliptical galaxies, and (2) later, less violent processes -- such as starvation and tidal stripping, for S0 galaxies.
We discuss scientific, technical and programmatic issues related to the use of an NRO 2.4m telescope for the WFIRST initiative of the 2010 Decadal Survey. We show that this implementation of WFIRST, which we call NEW WFIRST, would achieve the goals o f the NWNH Decadal Survey for the WFIRST core programs of Dark Energy and Microlensing Planet Finding, with the crucial benefit of deeper and/or wider near-IR surveys for GO science and a potentially Hubble-like Guest Observer program. NEW WFIRST could also include a coronagraphic imager for direct detection of dust disks and planets around neighboring stars, a high-priority science and technology precursor for future ambitious programs to image Earth-like planets around neighboring stars.
We report results of a unprecedentedly deep, blind search for Ly-alpha emitters (LAEs) at z = 5.7 using IMACS, the Inamori-Magellan Areal Camera & Spectrograph, with the goal of identifying missing sources of reionization that could also be basic bui lding blocks for todays L* galaxies. We describe how improvements in wide field imaging with the Baade telescope, upgrades to IMACS, and the accumulation of ~20 hours of integration per field in excellent seeing led to the detection of single-emission-line sources as faint as F ~ 2 x 10^{-18} ergs s^{-1} cm^{-2}, a sensitivity 5 times deeper than our first search (Martin et al. 2008). A reasonable correction for foreground interlopers implies a steep rise of approximately an order of magnitude in source density for a factor of four drop in flux, from F = 10^{-17.0} ergs s^{-1} cm^{-2} to F = 10^{-17.6} (2.5) x 10^{-18} ergs s^{-1} cm^{-2}. At this flux the putative LAEs have reached a surface density of ~1 per sq arcminute -- a comoving volume density of 4 x 10^{-3} Mpc^{-3}, several times the density of L* galaxies today. Such a population of faint LAEs would account for a significant fraction of the critical flux density required to complete reionization at this epoch, and would be good candidates for building blocks of stellar mass ~10^{8-9} Msun for the young galaxies of this epoch.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا