ترغب بنشر مسار تعليمي؟ اضغط هنا

51 - A. Coley 2015
The action in general relativity (GR), which is an integral over the manifold plus an integral over the boundary, is a global object and is only well defined when the topology is fixed. Therefore, to use the action in GR and in most approaches to qua ntum gravity (QG) based on a covariant Lorentzian action, there needs to exist a prefered (global) timelike vector, and hence a global topology $R times S^3$, for it to make sense. This is especially true in the Hamiltonian formulation of QG. Therefore, in order to do canonical quantization, we need to know the topology, appropriate boundary conditions and (in an open manifold) the conditions at infinity, which affects the fundamental geometrical scalar invariants of the spacetime (and especially those which may occur in the QG action).
$mathcal{I}$-non-degenerate spaces are spacetimes that can be characterized uniquely by their scalar curvature invariants. The ultimate goal of the current work is to construct a basis for the scalar polynomial curvature invariants in three dimension al Lorentzian spacetimes. In particular, we seek a minimal set of algebraically independent scalar curvature invariants formed by the contraction of the Riemann tensor and its covariant derivatives up to fifth order of differentiation. We use the computer software emph{Invar} to calculate an overdetermined basis of scalar curvature invariants in three dimensions. We also discuss the equivalence method and the Karlhede algorithm for computing Cartan invariants in three dimensions.
There are a number of algebraic classifications of spacetimes in higher dimensions utilizing alignment theory, bivectors and discriminants. Previous work gave a set of necessary conditions in terms of discriminants for a spacetime to be of a particul ar algebraic type. We demonstrate the discriminant approach by applying the techniques to the Sorkin-Gross-Perry soliton, the supersymmetric and doubly-spinning black rings and some other higher dimensional spacetimes. We show that even in the case of some very complicated metrics it is possible to compute the relevant discriminants and extract useful information from them.
Kundt spacetimes are of great importance in general relativity in 4 dimensions and have a number of topical applications in higher dimensions in the context of string theory. The degenerate Kundt spacetimes have many special and unique mathematical p roperties, including their invariant curvature structure and their holonomy structure. We provide a rigorous geometrical kinematical definition of the general Kundt spacetime in 4 dimensions; essentially a Kundt spacetime is defined as one admitting a null vector that is geodesic, expansion-free, shear-free and twist-free. A Kundt spacetime is said to be degenerate if the preferred kinematic and curvature null frames are all aligned. The degenerate Kundt spacetimes are the only spacetimes in 4 dimensions that are not $mathcal{I}$-non-degenerate, so that they are not determined by their scalar polynomial curvature invariants. We first discuss the non-aligned Kundt spacetimes, and then turn our attention to the degenerate Kundt spacetimes. The degenerate Kundt spacetimes are classified algebraically by the Riemann tensor and its covariant derivatives in the aligned kinematic frame; as an example, we classify Riemann type D degenerate Kundt spacetimes in which $ abla(Riem), abla^{(2)}(Riem)$ are also of type D. We discuss other local characteristics of the degenerate Kundt spacetimes. Finally, we discuss degenerate Kundt spacetimes in higher dimensions.
95 - A. A. Coley 2008
The Universe is not isotropic or spatially homogeneous on local scales. The averaging of local inhomogeneities in general relativity can lead to significant dynamical effects on the evolution of the Universe, and even if the effects are at the 1% lev el they must be taken into account in a proper interpretation of cosmological observations. We discuss the effects that averaging (and inhomogeneities in general) can have on the dynamical evolution of the Universe and the interpretation of cosmological data. All deductions about cosmology are based on the paths of photons. We discuss some qualitative aspects of the motion of photons in an averaged geometry, particularly within the context of the luminosity distance-redshift relation in the simple case of spherical symmetry.
145 - A. Coley 2008
We review the theory of alignment in Lorentzian geometry and apply it to the algebraic classification of the Weyl tensor in higher dimensions. This classification reduces to the the well-known Petrov classification of the Weyl tensor in four dimensio ns. We discuss the algebraic classification of a number of known higher dimensional spacetimes. There are many applications of the Weyl classification scheme, especially in conjunction with the higher dimensional frame formalism that has been developed in order to generalize the four dimensional Newman--Penrose formalism. For example, we discuss higher dimensional generalizations of the Goldberg-Sachs theorem and the Peeling theorem. We also discuss the higher dimensional Lorentzian spacetimes with vanishing scalar curvature invariants and constant scalar curvature invariants, which are of interest since they are solutions of supergravity theory.
47 - A.A. Coley 2007
The gravitational field equations on cosmological scales are obtained by averaging the Einstein field equations of general relativity. By assuming spatial homogeneity and isotropy on the largest scales, the local inhomogeneities affect the dynamics t hough correction (backreaction) terms, which can lead to behaviour qualitatively and quantitatively different from the Friedmann-Lema^{i}tre-Robertson-Walker models. The effects of averaging on cosmological observations are discussed. It is argued that, based on estimates from observational data, the backreaction (and, in particular, the averaged spatial curvature) can have a very significant dynamical effect on the evolution of the Universe and must be taken into account in observational cosmology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا