ترغب بنشر مسار تعليمي؟ اضغط هنا

130 - T. Miyanaga , A. Tomonaga , H. Ito 2021
We investigate the ultrastrong tunable coupler for coupling of superconducting resonators. Obtained coupling constant exceeds 1 GHz, and the wide range tunability is achieved both antiferromagnetics and ferromagnetics from -1086 MHz to 604 MHz. Ultra strong coupler is composed of rf-SQUID and dc-SQUID as tunable junctions, which connected to resonators via shared aluminum thin film meander lines enabling such a huge coupling constant. The spectrum of the coupler obviously shows the breaking of the rotating wave approximation, and our circuit model treating the Josephson junction as a tunable inductance reproduces the experimental results well. The ultrastrong coupler is expected to be utilized in quantum annealing circuits and/or NISQ devices with dense connections between qubits.
We report an experimentally observed anomalous doubly split spectrum and its split-width fluctuation in an ultrastrongly coupled superconducting qubit and resonator. From an analysis of Rabimodel and circuit model Hamiltonians, we found that the doub ly split spectrum and split-width fluctuation are caused by discrete charge hops due to quasiparticle tunnelings and a continuous background charge fluctuation in islands of a flux qubit. During 70 hours in the spectrum measurement, split width fluctuates but the middle frequency of the split is constant. This result indicates that quasiparticles in our device seem mainly tunnel one particular junction. The background offsetcharge obtained from split width has the 1/f noise characteristic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا