ترغب بنشر مسار تعليمي؟ اضغط هنا

74 - Ahmet Keles , Erhai Zhao 2015
Motivated by recent progress in epitaxial growth of proximity structures of s-wave superconductors (S) and spin-active materials (M), we show that the periodic structure of S and M can behave effectively as a superconductor with pairs of point nodes, near which the low energy excitations are Weyl fermions. A simple toy model, where M is described by a Kronig-Penney potential with both spin-orbit coupling and exchange field, is proposed and solved to obtain the phase diagram of the nodal structure, the spin texture of the Weyl fermions, as well as the zero energy surface states in the form of open Fermi lines (Fermi arcs). Going beyond the simple model, a lattice model with alternating layers of S and magnetic $Z_2$ topological insulators (M) is solved. The calculated spectrum confirms previous prediction of Weyl nodes based on tunneling Hamiltonian of Dirac electrons. Our results provide further evidence that periodic structures of S and M are well suited for engineering gapless topological superconductors.
We consider the Bose-Hubbard model on a two-leg ladder under an artificial magnetic field, and investigate the superfluid-to-Mott insulator transition in this setting. Recently, this system has been experimentally realized [M.Atala textit{et al.}, Na ture Physics textbf{10}, 588--593 (2014)], albeit in a parameter regime that is far from the Mott transition boundary. Depending on the strength of the magnetic field, the single-particle spectrum has either a single ground state or two degenerate ground states. The transition between these two phases is reflected in the many-particle properties. We first investigate these phases through the Bogoliubov approximation in the superfluid regime and calculate the transition boundary for weak interactions. For stronger interactions the system is expected to form a Mott insulator. We calculate the Mott transition boundary as a function of the magnetic field and interleg coupling with mean-field theory, strong-coupling expansion and density matrix renormalization group (DMRG). Finally, using the DMRG, we investigate the particle-hole excitation gaps of this system at different filling factors and find peaks at simple fractions indicating the possibility of correlated phases.
In contrast to conventional s-wave superconductivity, unconventional (e.g. p or d-wave) superconductivity is strongly suppressed even by relatively weak disorder. Upon approaching the superconductor-metal transition, the order parameter amplitude bec omes increasingly inhomogeneous leading to effective granularity and a phase ordering transition described by the Mattis model of spin glasses. One consequence of this is that at low enough temperatures, between the clean unconventional superconducting and the diffusive metallic phases, there is necessarily an intermediate superconducting phase which exhibits s-wave symmetry on macroscopic scales.
We study low temperature electron transport in p-wave superconductor-insulator-normal metal junctions. In diffusive metals the p-wave component of the order parameter decays exponentially at distances larger than the mean free path $l$. At the superc onductor-normal metal boundary, due to spin-orbit interaction, there is a triplet to singlet conversion of the superconducting order parameter. The singlet component survives at distances much larger than $l$ from the boundary. It is this component that controls the low temperature resistance of the junctions. As a result, the resistance of the system strongly depends on the angle between the insulating boundary and the ${bf d}$-vector characterizing the spin structure of the triplet superconducting order parameter. We also analyze the spatial dependence of the electric potential in the presence of the current, and show that the electric field is suppressed in the insulating boundary as well as in the normal metal at distances of order of the coherence length away from the boundary. This is very different from the case of the normal metal-insulator-normal metal junctions, where the voltage drop takes place predominantly at the insulator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا