ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic impurities embedded in a metal interact via an effective Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling mediated by the conduction electrons, which is commonly assumed to be long ranged, with an algebraic decay in the inter-impurity distance. However, they can also form a Kondo screened state that is oblivious to the presence of other impurities. The competition between these effects leads to a critical distance above which Kondo effect dominates, translating into a finite range for the RKKY interaction. We study this mechanism on the square and cubic lattices by introducing an exact mapping onto an effective one-dimensional problem that we can solve with the density matrix renormalization group method (DMRG). We show a clear departure from the conventional RKKY theory, that can be attributed to the dimensionality and different densities of states. In particular, for dimension d>1, Kondo physics dominates even at short distances, while the ferromagnetic RKKY state is energetically unfavorable.
We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor $ u=5/2$. Our studies are performed using both exact diagonalization a nd Density Matrix Renormalization Group (DMRG) on the sphere. We find that for the Coulomb interaction the exact finite-system ground state is fully polarized, for shifts corresponding to both the Moore-Read Pfaffian state and its particle-hole conjugate (anti-Pfaffian). This result is found to be robust against small variations of the interaction. The low-energy excitation spectrum is consistent with spin-wave excitations of a fully-magnetized ferromagnet.
We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low densit y regime, the system phase-separates into a well defined superconducting core and a fully polarized metallic cloud surrounding it. We argue that the superconducting phase corresponds to a 1D analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of tightly bound bosonic pairs with a finite center-of-mass momentum that scales linearly with the magnetization. In the large density limit, the system allows for four phases: in the core, we either find a Fock state of localized pairs or a metallic shell with free spin-down fermions moving in a fully filled background of spin-up fermions. As the magnetization increases, the Fock state disappears to give room for a metallic phase, with a partially polarized superconducting FFLO shell and a fully polarized metallic cloud surrounding the core.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا