ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - A.P. Masucci 2011
In this work we consider the topological analysis of symbolic formal systems in the framework of network theory. In particular we analyse the network extracted by Principia Mathematica of B. Russell and A.N. Whitehead, where the vertices are the stat ements and two statements are connected with a directed link if one statement is used to demonstrate the other one. We compare the obtained network with other directed acyclic graphs, such as a scientific citation network and a stochastic model. We also introduce a novel topological ordering for directed acyclic graphs and we discuss its properties in respect to the classical one. The main result is the observation that formal systems of knowledge topologically behave similarly to self-organised systems.
In this paper we analyse the street network of London both in its primary and dual representation. To understand its properties, we consider three idealised models based on a grid, a static random planar graph and a growing random planar graph. Compa ring the models and the street network, we find that the streets of London form a self-organising system whose growth is characterised by a strict interaction between the metrical and informational space. In particular, a principle of least effort appears to create a balance between the physical and the mental effort required to navigate the city.
126 - A.P. Masucci , G.J. Rodgers 2007
We study the directed and weighted network in which the wards of London are vertices and two vertices are connected whenever there is at least one person commuting to work from a ward to another. Remarkably the in-strength and in-degree distribution tail is a power law with exponent around -2, while the out-strength and out-degree distribution tail is exponential. We propose a simple square lattice model to explain the observed empirical behaviour.
We introduce a new class of deterministic networks by associating networks with Diophantine equations, thus relating network topology to algebraic properties. The network is formed by representing integers as vertices and by drawing cliques between M vertices every time that M distinct integers satisfy the equation. We analyse the network generated by the Pythagorean equation $x^{2}+y^{2}= z^{2}$ showing that its degree distribution is well approximated by a power law with exponential cut-off. We also show that the properties of this network differ considerably from the features of scale-free networks generated through preferential attachment. Remarkably we also recover a power law for the clustering coefficient.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا