ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a sample of brown dwarfs identified with the {it Wide-field Infrared Survey Explorer} (WISE) for which we have obtained {it Hubble Space Telescope} ({it HST}) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (twenty- two in total) was observed with the G141 grism covering 1.10$-$1.70 $mu$m, while fifteen were also observed with the G102 grism, which covers 0.90$-$1.10 $mu$m. The additional wavelength coverage provided by the G102 grism allows us to 1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g. ammonia bands) and 2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35$+$280548.5 (Y0.5), WISE J120604.38$+$840110.6 (Y0), and WISE J235402.77$+$024015.0 (Y1) are the nineteenth, twentieth, and twenty-first spectroscopically confirmed Y dwarfs to date. We also present {it HST} grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.
We report an in-depth study of the F8-type star HD 166191, identified in an ongoing survey for stars exhibiting infrared emission above their expected photospheres in the Wide-field Infrared Survey Explorer all-sky catalog. The fractional IR luminosi ty measured from 3.5 to 70 $mu$m is exceptionally high (L$_{IR}$/L$_{bol}$ $sim$10%). Near-diffraction limited imaging observations with the T-ReCS Si filter set on the Gemini South telescope and adaptive optics imaging with the NIRC2 Lp filter on the Keck II telescope confirmed that the excess emission coincides with the star. Si-band images show a strong solid-state emission feature at $sim$10 $mu$m. Theoretical evolutionary isochrones and optical spectroscopic observations indicate a stellar age in the range 10-100 Myr. The large dust mass seen in HD 166191s terrestrial planet zone is indicative of a recent collision between planetary embryos or massive ongoing collisional grinding associated with planet building.
It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age <10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of m id-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members (TWA 33 and TWA 34) of the TW Hydrae Association. Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer (WISE) catalog and they show proper motion and youthful spectroscopic characteristics -- namely Halpha emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess -- the first unambiguous evidence of a dusty circumstellar disk -- around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius Centaurus Complex.
We assess the current membership of the nearby, young TW Hydrae Association and examine newly proposed members with the Wide-field Infrared Survey Explorer (WISE) to search for infrared excess indicative of circumstellar disks. Newly proposed members TWA 30A, TWA 30B, TWA 31, and TWA 32 all show excess emission at 12 and 22 mum providing clear evidence for substantial dusty circumstellar disks around these low-mass, ~8 Myr old stars that were previously shown to likely be accreting from circumstellar material. TWA 30B shows large amounts of self-extinction, likely due to an edge-on disk geometry. We also confirm previously reported circumstellar disks with WISE, and determine a 22 mum excess fraction of 42+/- 9% based on our results.
We present the methods and first results of a survey of nearby high proper motion main sequence stars to probe for cool companions with the Gemini camera at Lick Observatory. This survey uses a sample of old (age > 2 Gyr) stars as targets to probe fo r companions down to temperatures of 500 K. Multi-epoch observations allow us to discriminate comoving companions from background objects. So far, our survey successfully re-discovers the wide T8.5 companion to GJ 1263 and discovers a companion to the nearby M0V star GJ 660.1. The companion to GJ 660.1 (GJ 660.1B) is ~4 magnitudes fainter than its host star in the J-band and is located at a projected separation of ~120AU. Known trigonometric parallax and 2MASS magnitudes for the GJ 660.1 system indicate a spectral type for the companion of M9 +/- 2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا