ترغب بنشر مسار تعليمي؟ اضغط هنا

The conductance profiles of magnetic transition metal atoms, such as Fe, Co and Mn, deposited on surfaces and probed by a scanning tunneling microscope (STM), provide detailed information on the magnetic excitations of such nano-magnets. In general t he profiles are symmetric with respect to the applied bias. However a set of recent experiments has shown evidence for inherent asymmetries when either a normal or a spin-polarized STM tip is used. In order to explain such asymmetries here we expand our previously developed perturbative approach to electron-spin scattering to the spin- polarized case and to the inclusion of out of equilibrium spin populations. In the case of a magnetic STM tip we demonstrate that the asymmetries are driven by the non-equilibrium occupation of the various atomic spin-levels, an effect that reminds closely that electron spin-transfer. In contrast when the tip is not spin-polarized such non-equilibrium population cannot be build up. In this circumstance we propose that the asymmetry simply originates from the transition metal ion density of state, which is included here as a non-vanishing real component to the spin-scattering self-energy.
Recent experimental advances in scanning tunneling microscopy make the measurement of the conductance spectra of isolated and magnetically coupled atoms on nonmagnetic substrates possible. Notably these spectra are characterized by a competition betw een the Kondo effect and spin-flip inelastic electron tunneling. In particular they include Kondo resonances and a logarithmic enhancement of the conductance at voltages corresponding to magnetic excitations, two features that cannot be captured by second order perturbation theory in the electron-spin coupling. We have now derived a third order analytic expression for the electron-spin self-energy, which can be readily used in combination with the non-equilibrium Greens function scheme for electron transport at finite bias. We demonstrate that our method is capable of quantitative description the competition between Kondo resonances and spin-flip inelastic electron tunneling at a computational cost significantly lower than that of other approaches. The examples of Co and Fe on CuN are discussed in detail.
We present a theoretical study of the spin transport properties of mono-atomic magnetic chains with a focus on the spectroscopical features of the I-V curve associated to spin-flip processes. Our calculations are based on the s-d model for magnetism with the electron transport treated at the level of the non-equilibrium Greens function formalism. Inelastic spin-flip scattering processes are introduced perturbatively via the first Born approximation and an expression for the associated self-energy is derived. The computational method is then applied to describe the I-V characteristics and its derivatives of one dimensional chains of Mn atoms and the results are then compared to available experimental data. We find a qualitative and quantitative agreement between the calculated and the experimental conductance spectra. Significantly we are able to describe the relative intensities of the spin excitation features in the I-V curve, by means of a careful analysis of the spin transition selection rules associated to the atomic chains.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا