ترغب بنشر مسار تعليمي؟ اضغط هنا

92 - A. Marinov , A. Pape , Y. Kashiv 2011
Negative results obtained in AMS searches by Dellinger et al. on mostly unrefined ores have led them to conclude that the very heavy long-lived species found in chemically processed samples with ICP-SFMS by Marinov et al. are artifacts. We argue that it may not be surprising that results obtained from small random samplings of inhomogeneous natural minerals would contrast with concentrations found in homogeneous materials extracted from large quantities of ore. We also point out that it is possible that the groups of counts at masses 296 and 294 seen by Dellinger et al. could be, within experimental uncertainties, due to $^{296}$Rg and $^{294}$eka-Bi in long-lived isomeric states. In such case, the experiments of Dellinger et al. lend support to the experiments of Marinov et al.
Evidence for the existence of a superheavy nucleus with atomic mass number A=292 and abundance (1-10)x10^(-12) relative to 232Th has been found in a study of natural Th using inductively coupled plasma-sector field mass spectrometry. The measured mas s matches the predictions [1,2] for the mass of an isotope with atomic number Z=122 or a nearby element. Its estimated half-life of t1/2 >= 10^8 y suggests that a long-lived isomeric state exists in this isotope. The possibility that it might belong to a new class of long-lived high spin super- and hyperdeformed isomeric states is discussed.[3-6]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا