ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution photoemission spectroscopy and realistic ab-initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, medi ated by the free-electron environment, and Coulomb interaction among d-electrons gives rise to complex electronic configurations. The multiplet structure of a single Fe atom evolves and gradually dissolves into a quasiparticle peak near the Fermi level with increasing the host electron density. The effective multi-orbital impurity problem within the exact diagonalization scheme describes the whole range of hybridizations.
The electronic structure of a prototype Kondo system, a cobalt impurity in a copper host is calculated with accurate taking into account of correlation effects on the Co atom. Using the recently developed continuous-time QMC technique, it is possible to describe the Kondo resonance with a complete four-index Coulomb interaction matrix. This opens a way for completely first-principle calculations of the Kondo temperature. We have demonstrated that a standard practice of using a truncated Hubbard Hamiltonian to consider the Kondo physics can be quantitatively inadequate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا