ترغب بنشر مسار تعليمي؟ اضغط هنا

Context: Several hundred candidate hybrid pulsators of type A-F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to st udy the full interior of the genuine hybrids, in which both low-radial-order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most delta Scuti stars also show long-period light variations represents a real challenge for theory. Methods: Fourier analysis of all the available Kepler light curves. Investigation of the frequency and period spacings. Determination of the stellar physical parameters from spectroscopic observations. Modelling of the transit events. Results: The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 c/d. The light variations are dominated by the beating of two dominant frequencies located at around 4 c/d. The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v~70 km/s, i > 70 deg) or a fast rotator (v~200 km/s) with i~20 deg. The transit analysis disclosed that the transit events which occur with a ~197 c/d period may be caused by a 1.6 R_Jup body orbiting a fainter star, which would be spatially coincident with KIC 9533489.
The high accuracy of space data increased the number of the periodicities determined for pulsating variable stars, but the mode identification is still a critical point in the non-asymptotic regime. We use regularities in frequency spacings for ident ifying the pulsation modes of the recently discovered delta Sct star ID 102749568. In addition to analysing CoRoT light curves (15252 datapoints spanning 131 days), we obtained and analysed both spectroscopic and extended multi-colour photometric data. We applied standard tools (MUFRAN, Period04, SigSpec, and FAMIAS) for time-series analysis. A satisfactory light-curve fit was obtaining by means of 52 independent modes and 15 combination terms. The frequency spacing revealed distinct peaks around large (25.55-31.43 microHz), intermediate (9.80, 7.66 microHz), and low (2.35 microHz) separations. We directly identified 9 modes, and the l and n values of other three modes were extrapolated. The combined application of spectroscopy, multi-colour photometry, and modelling yielded the precise physical parameters and confirmed the observational mode identification. The large separation constrained the log g and related quantities. The dominant mode is the radial first overtone.
118 - M. Paparo , Zs. Bognar , E. Plachy 2013
We present the results of a comparative period search on different time-scales and modelling of the ZZ Ceti (DAV) star GD 154. We determined six frequencies as normal modes and four rotational doublets around the ones having the largest amplitude. Tw o normal modes at 807.62 and 861.56 microHz have never been reported before. A rigorous test revealed remarkable intrinsic amplitude variability of frequencies at 839.14 and 861.56 microHz over a 50 d time-scale. In addition, the multimode pulsation changed to monoperiodic pulsation with an 843.15 microHz dominant frequency at the end of the observing run. The 2.76 microHz average rotational split detected led to a determination of a 2.1 d rotational period for GD 154. We searched for model solutions with effective temperatures and log g close to the spectroscopically determined ones. The best-fitting models resulting from the grid search have M_H between 6.3 x 10^-5 and 6.3 x 10^-7 M*, which means thicker hydrogen layer than the previous studies suggested. Our investigations show that mode trapping does not necessarily operate in all of the observed modes and the best candidate for a trapped mode is at 2484 microHz.
We present the results on period search and modeling of the cool DAV star KUV 02464+3239. Our observations resolved the multiperiodic pulsational behaviour of the star. In agreement with its position near the red edge of the DAV instability strip, it shows large amplitude, long period pulsation modes, and has a strongly non-sinusoidal light curve. We determined 6 frequencies as normal modes and revealed remarkable short-term amplitude variations. A rigorous test was performed for the possible source of amplitude variation: beating of modes, effect of noise, unresolved frequencies or rotational triplets. Among the best-fit models resulting from a grid search, we selected 3 that gave l=1 solutions for the largest amplitude modes. These models had masses of 0.645, 0.650 and 0.680 M_Sun. The 3 `favoured models have M_H between 2.5x10^-5 - 6.3x10^-6 M_* and give 14.2 - 14.8 mas seismological parallax. The 0.645 M_Sun (11400 K) model also matches the spectroscopic log g and T_eff within 1 sigma. We investigated the possibility of mode trapping and concluded that while it can explain high amplitude modes, it is not required.
The ZZ Ceti star KUV 02464+3239 was observed over a whole season at the mountain station of Konkoly Observatory. A rigorous frequency analysis revealed 6 certain periods between 619 and 1250 seconds, with no shorter period modes present. We use the o bserved periods, published effective temperature and surface gravity, along with the model grid code of Bischoff-Kim, Montgomery and Winget (2008) to perform a seismological analysis. We find acceptable model fits with masses between 0.60 and 0.70 M_Sun. The hydrogen layer mass of the acceptable models are almost always between 10^-4 and 10^-6 M_*. In addition to our seismological results, we also show our analysis of individual light curve segments. Considering the non-sinusoidal shape of the light curve and the Fourier spectra of segments showing large amplitude variations, the importance of non-linear effects in the pulsation is clearly seen.
102 - Zs. Bognar 2007
New observations of GD 99 are analysed. The unusual pulsation behaviour, showing both long and short periods, has been confirmed. All the available periods show a grouping of short and long period modes with roughly regular spacing. If we interpret t he groups separately, a binary nature can be a possible explanation as in the similar cases of WD 2350-0054 and G29-38.
78 - Zs. Bognar 2007
Preliminary results on KUV 02464+3239, a pulsating DA white dwarf are presented. Located near the red edge of the DAV instability strip, KUV 02464+3239 shows large amplitude and long period pulsation modes. Up to now only one mode was known from a 50 -minute-long light curve. Our more extended observations allowed the identification of three additional frequencies. The presence of previously known harmonics were confirmed and weak subharmonics are also noticeable at some parts of the light curve. This suggests the dominance of nonlinear pulsation effects from time to time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا