ترغب بنشر مسار تعليمي؟ اضغط هنا

217 - Zoran v{S}koda 2020
Consider any representation $phi$ of a finite-dimensional Lie algebra $g$ by derivations of the completed symmetric algebra $hat{S}(g^*)$ of its dual. Consider the tensor product of $hat{S}(g^*)$ and the exterior algebra $Lambda(g)$. We show that the representation $phi$ extends canonically to the representation $tildephi$ of that tensor product algebra. We construct an exterior derivative on that algebra, giving rise to a twisted version of the exterior differential calculus with the enveloping algebra in the role of the coordinate algebra. In this twisted version, the commutators between the noncommutative differentials and coordinates are formal power series in partial derivatives. The square of the corresponding exterior derivative is zero like in the classical case, but the Leibniz rule is deformed.
Given formal differential operators $F_i$ on polynomial algebra in several variables $x_1,...,x_n$, we discuss finding expressions $K_l$ determined by the equation $exp(sum_i x_i F_i)(exp(sum_j q_j x_j)) = exp(sum_l K_l x_l)$ and their applications. The expressions for $K_l$ are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding $K_l$. We elaborate an example for a Lie algebra $su(2)$, related to a quantum gravity application from the literature.
Quantum field theory allows more general symmetries than groups and Lie algebras. For instance quantum groups, that is Hopf algebras, have been familiar to theoretical physicists for a while now. Nowdays many examples of symmetries of categorical fla vor -- categorical groups, groupoids, Lie algebroids and their higher analogues -- appear in physically motivated constructions and faciliate constructions of geometrically sound models and quantization of field theories. Here we consider two flavours of categorified symmetries: one coming from noncommutative algebraic geometry where varieties themselves are replaced by suitable categories of sheaves; another in which the gauge groups are categorified to higher groupoids. Together with their gauge groups, also the fiber bundles themselves become categorified, and their gluing (or descent data) is given by nonabelian cocycles, generalizing group cohomology, where infinity-groupoids appear in the role both of the domain and the coefficient object. Such cocycles in particular represent higher principal bundles, gerbes, -- possibly equivariant, possibly with connection -- as well as the corresponding associated higher vector bundles. We show how the Hopf algebra known as the Drinfeld double arises in this context. This article is an expansion of a talk that the second author gave at the 5th Summer School of Modern Mathematical Physics in 2008.
176 - Zoran v{S}koda 2009
We here present rudiments of an approach to geometric actions in noncommutative algebraic geometry, based on geometrically admissible actions of monoidal categories. This generalizes the usual (co)module algebras over Hopf algebras which provide affi ne examples. We introduce a compatibility of monoidal actions and localizations which is a distributive law. There are satisfactory notions of equivariant objects, noncommutative fiber bundles and quotients in this setup.
38 - Zoran v{S}koda 2008
We define a bicategory in which the 0-cells are the entwinings over variable rings. The 1-cells are triples of a bimodule and two maps of bimodules which satisfy an additional hexagon, two pentagons and two (co)unit triangles; and the 2-cells are the maps of bimodules satisfying two simple compatibilities. The operation of getting the composed coring from a given entwining, is promoted here to a canonical morphism of bicategories from a bicategory of entwinings to the Streets bicategory of corings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا