ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on Jaynes maximum entropy principle, exponential random graphs provide a family of principled models that allow the prediction of network properties as constrained by empirical data (observables). However, their use is often hindered by the deg eneracy problem characterized by spontaneous symmetry-breaking, where predictions fail. Here we show that degeneracy appears when the corresponding density of states function is not log-concave, which is typically the consequence of nonlinear relationships between the constraining observables. Exploiting these nonlinear relationships here we propose a solution to the degeneracy problem for a large class of systems via transformations that render the density of states function log-concave. The effectiveness of the method is illustrated on examples.
A joint degree matrix (JDM) specifies the number of connections between nodes of given degrees in a graph, for all degree pairs and uniquely determines the degree sequence of the graph. We consider the space of all balanced realizations of an arbitra ry JDM, realizations in which the links between any two degree groups are placed as uniformly as possible. We prove that a swap Markov Chain Monte Carlo (MCMC) algorithm in the space of all balanced realizations of an {em arbitrary} graphical JDM mixes rapidly, i.e., the relaxation time of the chain is bounded from above by a polynomial in the number of nodes $n$. To prove fast mixing, we first prove a general factorization theorem similar to the Martin-Randall method for disjoint decompositions (partitions). This theorem can be used to bound from below the spectral gap with the help of fast mixing subchains within every partition and a bound on an auxiliary Markov chain between the partitions. Our proof of the general factorization theorem is direct and uses conductance based methods (Cheeger inequality).
One of the simplest ways to decide whether a given finite sequence of positive integers can arise as the degree sequence of a simple graph is the greedy algorithm of Havel and Hakimi. This note extends their approach to directed graphs. It also studi es cases of some simple forbidden edge-sets. Finally, it proves a result which is useful to design an MCMC algorithm to find random realizations of prescribed directed degree sequences.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا