ترغب بنشر مسار تعليمي؟ اضغط هنا

Point clouds captured in real-world applications are often incomplete due to the limited sensor resolution, single viewpoint, and occlusion. Therefore, recovering the complete point clouds from partial ones becomes an indispensable task in many pract ical applications. In this paper, we present a new method that reformulates point cloud completion as a set-to-set translation problem and design a new model, called PoinTr that adopts a transformer encoder-decoder architecture for point cloud completion. By representing the point cloud as a set of unordered groups of points with position embeddings, we convert the point cloud to a sequence of point proxies and employ the transformers for point cloud generation. To facilitate transformers to better leverage the inductive bias about 3D geometric structures of point clouds, we further devise a geometry-aware block that models the local geometric relationships explicitly. The migration of transformers enables our model to better learn structural knowledge and preserve detailed information for point cloud completion. Furthermore, we propose two more challenging benchmarks with more diverse incomplete point clouds that can better reflect the real-world scenarios to promote future research. Experimental results show that our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones. Code is available at https://github.com/yuxumin/PoinTr
How do the neural networks distinguish two images? It is of critical importance to understand the matching mechanism of deep models for developing reliable intelligent systems for many risky visual applications such as surveillance and access control . However, most existing deep metric learning methods match the images by comparing feature vectors, which ignores the spatial structure of images and thus lacks interpretability. In this paper, we present a deep interpretable metric learning (DIML) method for more transparent embedding learning. Unlike conventional metric learning methods based on feature vector comparison, we propose a structural matching strategy that explicitly aligns the spatial embeddings by computing an optimal matching flow between feature maps of the two images. Our method enables deep models to learn metrics in a more human-friendly way, where the similarity of two images can be decomposed to several part-wise similarities and their contributions to the overall similarity. Our method is model-agnostic, which can be applied to off-the-shelf backbone networks and metric learning methods. We evaluate our method on three major benchmarks of deep metric learning including CUB200-2011, Cars196, and Stanford Online Products, and achieve substantial improvements over popular metric learning methods with better interpretability. Code is available at https://github.com/wl-zhao/DIML
In this paper, we consider the use of large-scale genomics data for treatment recommendation. This is related to the individualized treatment rule [Qian and Murphy 2011] but we specially aim at overcoming its limitations when there is a large number of covariates and/or an issue of model misspecification. We tackle the problem using a dimension reduction method, namely Sliced Inverse Regression (SIR, [Li 1991]), with a rich class of models for the treatment response. More interestingly, SIR defines a feature space for high-dimensional data, offering an advantage similar to the popular neural network models. With the features obtained from SIR, simple visualization is used to compare different treatment options and display the recommended treatment. We further derive the consistency and the convergence rate of the proposed recommendation approach through a value function. The effectiveness of the proposed approach is demonstrated by simulation studies and a real-data example of the treatment of multiple myeloma with favorable performance.
94 - Yu Li , Fei Xiong , Ziyi Wang 2021
Nowadays, artificial neural networks are widely used for users online travel planning. Personalized travel planning has many real applications and is affected by various factors, such as transportation type, intention destination estimation, budget l imit and crowdness prediction. Among those factors, users intention destination prediction is an essential task in online travel platforms. The reason is that, the user may be interested in the travel plan only when the plan matches his real intention destination. Therefore, in this paper, we focus on predicting users intention destinations in online travel platforms. In detail, we act as online travel platforms (such as Fliggy and Airbnb) to recommend travel plans for users, and the plan consists of various vacation items including hotel package, scenic packages and so on. Predicting the actual intention destination in travel planning is challenging. Firstly, users intention destination is highly related to their travel status (e.g., planning for a trip or finishing a trip). Secondly, users actions (e.g. clicking, searching) over different product types (e.g. train tickets, visa application) have different indications in destination prediction. Thirdly, users may mostly visit the travel platforms just before public holidays, and thus user behaviors in online travel platforms are more sparse, low-frequency and long-period. Therefore, we propose a Deep Multi-Sequences fused neural Networks (DMSN) to predict intention destinations from fused multi-behavior sequences. Real datasets are used to evaluate the performance of our proposed DMSN models. Experimental results indicate that the proposed DMSN models can achieve high intention destination prediction accuracy.
170 - Ziyi Wang , Wendong Xiao , Yu Li 2021
Most current recommender systems used the historical behaviour data of user to predict user preference. However, it is difficult to recommend items to new users accurately. To alleviate this problem, existing user cold start methods either apply deep learning to build a cross-domain recommender system or map user attributes into the space of user behaviour. These methods are more challenging when applied to online travel platform (e.g., Fliggy), because it is hard to find a cross-domain that user has similar behaviour with travel scenarios and the Location Based Services (LBS) information of users have not been paid sufficient attention. In this work, we propose a LBS-based Heterogeneous Relations Model (LHRM) for user cold start recommendation, which utilizes users LBS information and behaviour information in related domains and users behaviour information in travel platforms (e.g., Fliggy) to construct the heterogeneous relations between users and items. Moreover, an attention-based multi-layer perceptron is applied to extract latent factors of users and items. Through this way, LHRM has better generalization performance than existing methods. Experimental results on real data from Fliggys offline log illustrate the effectiveness of LHRM.
63 - Jia Xu , Ziyi Wang , Zulong Chen 2021
Matching items for a user from a travel item pool of large cardinality have been the most important technology for increasing the business at Fliggy, one of the most popular online travel platforms (OTPs) in China. There are three major challenges fa cing OTPs: sparsity, diversity, and implicitness. In this paper, we present a novel Fliggy ITinerary-aware deep matching NETwork (FitNET) to address these three challenges. FitNET is designed based on the popular deep matching network, which has been successfully employed in many industrial recommendation systems, due to its effectiveness. The concept itinerary is firstly proposed under the context of recommendation systems for OTPs, which is defined as the list of unconsumed orders of a user. All orders in a user itinerary are learned as a whole, based on which the implicit travel intention of each user can be more accurately inferred. To alleviate the sparsity problem, users profiles are incorporated into FitNET. Meanwhile, a series of itinerary-aware attention mechanisms that capture the vital interactions between users itinerary and other input categories are carefully designed. These mechanisms are very helpful in inferring a users travel intention or preference, and handling the diversity in a users need. Further, two training objectives, i.e., prediction accuracy of users travel intention and prediction accuracy of users click behavior, are utilized by FitNET, so that these two objectives can be optimized simultaneously. An offline experiment on Fliggy production dataset with over 0.27 million users and 1.55 million travel items, and an online A/B test both show that FitNET effectively learns users travel intentions, preferences, and diverse needs, based on their itineraries and gains superior performance compared with state-of-the-art methods. FitNET now has been successfully deployed at Fliggy, serving major online traffic.
90 - Yi Wei , Ziyi Wang , Yongming Rao 2020
In this paper, we propose a Point-Voxel Recurrent All-Pairs Field Transforms (PV-RAFT) method to estimate scene flow from point clouds. Since point clouds are irregular and unordered, it is challenging to efficiently extract features from all-pairs f ields in the 3D space, where all-pairs correlations play important roles in scene flow estimation. To tackle this problem, we present point-voxel correlation fields, which capture both local and long-range dependencies of point pairs. To capture point-based correlations, we adopt the K-Nearest Neighbors search that preserves fine-grained information in the local region. By voxelizing point clouds in a multi-scale manner, we construct pyramid correlation voxels to model long-range correspondences. Integrating these two types of correlations, our PV-RAFT makes use of all-pairs relations to handle both small and large displacements. We evaluate the proposed method on the FlyingThings3D and KITTI Scene Flow 2015 datasets. Experimental results show that PV-RAFT outperforms state-of-the-art methods by remarkable margins.
By using phase retrieval, Bragg Coherent Diffractive Imaging (BCDI) allows tracking of three-dimensional displacement fields inside individual nanocrystals. Nevertheless, in the presence of significant (1% and higher) strains, such as in the process of a structural phase transformation, fails due to the Bragg peak distortions. Here we present an advanced BCDI algorithm enabling imaging three-dimensional strain fields in highly strained crystals. We test the algorithm on particles simulated to undergo a structural phase transformation. While the conventional algorithm fails in unambiguously reconstructing the phase morphology, our algorithm correctly retrieves the morphology of coexistent phases with a strain difference of 1%. The key novelty is the simultaneous reconstruction of multiple scans of the same nanoparticle at snapshots through the phase transformations. The algorithm enables visualizing phase transformations in nanoparticles of lithium-ion, sodium-ion nanoparticles, and other nanoparticulate materials in working conditions (operando).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا