ترغب بنشر مسار تعليمي؟ اضغط هنا

We study generalized diffusion-wave equation in which the second order time derivative is replaced by integro-differential operator. It yields time fractional and distributed order time fractional diffusion-wave equations as particular cases. We cons ider different memory kernels of the integro-differential operator, derive corresponding fundamental solutions, specify the conditions of their non-negativity and calculate mean squared displacement for all cases. In particular, we introduce and study generalized diffusion-wave equations with regularized Prabhakar derivative of single and distributed orders. The equations considered can be used for modeling broad spectrum of anomalous diffusion processes and various transitions between different diffusion regimes.
In this paper we investigate the solution of generalized distributed order diffusion equations with composite time fractional derivative by using the Fourier-Laplace transform method. We represent solutions in terms of infinite series in Fox $H$-func tions. The fractional and second moments are derived by using Mittag-Leffler functions. We observe decelerating anomalous subdiffusion in case of two composite time fractional derivatives. Generalized uniformly distributed order diffusion equation, as a model for strong anomalous behavior, is analyzed by using Tauberian theorem. Some previously obtained results are special cases of those presented in this paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا