ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial training (AT) as a regularization method has proved its effectiveness on various tasks. Though there are successful applications of AT on some NLP tasks, the distinguishing characteristics of NLP tasks have not been exploited. In this pap er, we aim to apply AT on machine reading comprehension (MRC) tasks. Furthermore, we adapt AT for MRC tasks by proposing a novel adversarial training method called PQAT that perturbs the embedding matrix instead of word vectors. To differentiate the roles of passages and questions, PQAT uses additional virtual P/Q-embedding matrices to gather the global perturbations of words from passages and questions separately. We test the method on a wide range of MRC tasks, including span-based extractive RC and multiple-choice RC. The results show that adversarial training is effective universally, and PQAT further improves the performance.
Multilingual pre-trained models have achieved remarkable transfer performance by pre-trained on rich kinds of languages. Most of the models such as mBERT are pre-trained on unlabeled corpora. The static and contextual embeddings from the models could not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better. We propose a pre-training task named Alignment Language Model (AlignLM), which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction. We evaluate our method on multilingual machine reading comprehension and natural language interface tasks. The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.
Machine Reading Comprehension (MRC) is an important testbed for evaluating models natural language understanding (NLU) ability. There has been rapid progress in this area, with new models achieving impressive performance on various benchmarks. Howeve r, existing benchmarks only evaluate models on in-domain test sets without considering their robustness under test-time perturbations or adversarial attacks. To fill this important gap, we construct AdvRACE (Adversarial RACE), a new model-agnostic benchmark for evaluating the robustness of MRC models under four different types of adversarial attacks, including our novel distractor extraction and generation attacks. We show that state-of-the-art (SOTA) models are vulnerable to all of these attacks. We conclude that there is substantial room for building more robust MRC models and our benchmark can help motivate and measure progress in this area. We release our data and code at https://github.com/NoviScl/AdvRACE .
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا