ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe an approach based on topology optimization that enables automatic discovery of wavelength-scale photonic structures for achieving high-efficiency second-harmonic generation (SHG). A key distinction from previous formulation and designs th at seek to maximize Purcell factors at individual frequencies is that our method not only aims to achieve frequency matching (across an entire octave) and large radiative lifetimes, but also optimizes the equally important nonlinear--coupling figure of merit $bar{beta}$, involving a complicated spatial overlap-integral between modes. We apply this method to the particular problem of optimizing micropost and grating-slab cavities (one-dimensional multilayered structures) and demonstrate that a variety of material platforms can support modes with the requisite frequencies, large lifetimes $Q > 10^4$, small modal volumes $sim (lambda/n)^3$, and extremely large $bar{beta} gtrsim 10^{-2}$, leading to orders of magnitude enhancements in SHG efficiency compared to state of the art photonic designs. Such giant $bar{beta}$ alleviate the need for ultra-narrow linewidths and thus pave the way for wavelength-scale SHG devices with faster operating timescales and higher tolerance to fabrication imperfections.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا