ترغب بنشر مسار تعليمي؟ اضغط هنا

Operator spreading, often characterized by out-of-time-order correlators (OTOCs), is one of the central concepts in quantum many-body physics. However, measuring OTOCs is experimentally challenging due to the requirement of reversing the time evoluti on of the system. Here we apply Floquet engineering to investigate operator spreading in a superconducting 10-qubit chain. Floquet engineering provides an effective way to tune the coupling strength between nearby qubits, which is used to demonstrate quantum walks with tunable coupling, dynamic localization, reversed time evolution, and the measurement of OTOCs. A clear light-cone-like operator propagation is observed in the system with multiphoton excitations, and the corresponding spreading velocity is equal to that of quantum walk. Our results indicate that the method has a high potential for simulating a variety of quantum many-body systems and their dynamics, which is also scalable to more qubits and higher dimensional circuits.
Recently, quantum simulation of low-dimensional lattice gauge theories (LGTs) has attracted many interests, which may improve our understanding of strongly correlated quantum many-body systems. Here, we propose an implementation to approximate $mathb b{Z}_2$ LGT on superconducting quantum circuits, where the effective theory is a mixture of a LGT and a gauge-broken term. Using matrix product state based methods, both the ground state properties and quench dynamics are systematically investigated. With an increase of the transverse (electric) field, the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase. In the ordered phase, an approximate Gauss law of the $mathbb{Z}_2$ LGT emerges in the ground state. Moreover, to shed light on the experiments, we also study the quench dynamics, where there is a dynamical signature of the spontaneous translational symmetry breaking. The spreading of the single particle of matter degree is diffusive under the weak transverse field, while it is ballistic with small velocity for the strong field. Furthermore, due to the emergent Gauss law under the strong transverse field, the matter degree can also exhibit a confinement which leads to a strong suppression of the nearest-neighbor hopping. Our results pave the way for simulating the LGT on superconducting circuits, including the quantum phase transition and quench dynamics.
The Bloch oscillation (BO) and Wannier-Stark localization (WSL) are fundamental concepts about metal-insulator transitions in condensed matter physics. These phenomena have also been observed in semiconductor superlattices and simulated in platforms such as photonic waveguide arrays and cold atoms. Here, we report experimental investigation of BOs and WSL simulated with a 5-qubit programmable superconducting processor, of which the effective Hamiltonian is an isotropic $XY$ spin chain. When applying a linear potential to the system by properly tuning all individual qubits, we observe that the propagation of a single spin on the chain is suppressed. It tends to oscillate near the neighborhood of their initial positions, which demonstrates the characteristics of BOs and WSL. We verify that the WSL length is inversely correlated to the potential gradient. Benefiting from the precise single-shot simultaneous readout of all qubits in our experiments, we can also investigate the thermal transport, which requires the joint measurement of more than one qubits. The experimental results show that, as an essential characteristic for BOs and WSL, the thermal transport is also blocked under a linear potential. Our experiment would be scalable to more superconducting qubits for simulating various of out-of-equilibrium problems in quantum many-body systems.
72 - Zi-Yong Ge , Heng Fan 2020
We focus on the many-body eigenstates across a localization-delocalization phase transition. To characterize the robustness of the eigenstates, we introduce the eigenstate overlaps $mathcal{O}$ with respect to the different boundary conditions. In th e ergodic phase, the average of eigenstate overlaps $bar{mathcal{O}}$ is exponential decay with the increase of the system size indicating the fragility of its eigenstates, and this can be considered as an eigenstate-version butterfly effect of the chaotic systems. For localized systems, $bar{mathcal{O}}$ is almost size-independent showing the strong robustness of the eigenstates and the broken of eigenstate thermalization hypothesis. In addition, we find that the response of eigenstates to the change of boundary conditions in many-body localized systems is identified with the single-particle wave functions in Anderson localized systems. This indicates that the eigenstates of the many-body localized systems, as the many-body wave functions, may be independent of each other. We demonstrate that this is consistent with the existence of a large number of quasilocal integrals of motion in the many-body localized phase. Our results provide a new method to study localized and delocalized systems from the perspective of eigenstates.
We identify and investigate two classes of non-Hermitian systems, i.e., one resulting from Lorentz-symmetry violation (LSV) and the other from a complex mass (CM) with Lorentz invariance, from the perspective of quantum field theory. The mechanisms t o break, and approaches to restore, the bulk-boundary correspondence in these two types of non-Hermitian systems are clarified. The non-Hermitian system with LSV shows a non-Hermitian skin effect, and its topological phase can be characterized by mapping it to the Hermitian system via a non-compact $U(1)$ gauge transformation. In contrast, there exists no non-Hermitian skin effect for the non-Hermitian system with CM. Moreover, the conventional bulk-boundary correspondence holds in this (CM) system. We also consider a general non-Hermitian system in the presence of both LSV and CM, and we generalize its bulk-boundary correspondence.
69 - Zi-Yong Ge , Heng Fan 2018
The quantum walk is a dynamical protocol which describes the motion of spinful particles on a lattice. Also, it has been demonstrated to be a powerful platform to explore topological quantum matter. Recently, the quantum walk in coherent state space has been proposed theoretically and realized experimentally. However, due to the inherent characteristics of coherent states, it is challenging to control the number of photons when we need the coherent space to be a nearly orthogonal space in practice. Here, we demonstrate that the nonorthogonality of coherent sates, on the one hand can be cancelled by multiple measurement, on the other hand, it is useful resource to characterize the nature of the system. Thus the number of photons of the system is controllable. We first present a feasible scheme to measure the wave function of quantum walks. Then we show that the expected number of photons of the coherent space is good observable to represent topological properties of the system, which reflected the advantage of coherent state space quantum walks. In addition, we propose an experimental protocol in a circuit quantum electrodynamics architecture, where a superconducting qubit is a coin while the cavity mode is used for quantum walk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا