ترغب بنشر مسار تعليمي؟ اضغط هنا

We have constructed a catalog containing best available astrometric, photometric, radial velocity and astrophysical data for mainly F-type and G-type stars (called the Astrometric catalog associated with Astrophysical Data, ACAD), which contains 27,5 53 records, and is used for the purpose of analyzing the stellar kinematics in the Solar neighborhood. Using the Lindblad-Oort Model and compiled ACAD, we calculated the Solar motion and Oort constants in different age/metallicity bins. The evolution of kinematical parameters with stellar age and metallicity were investigated directly. The results show that the component of the Solar motion in the direction of Galactic rotation (denoted $S_2$) has a linear increase with respect to age, which may be a consequence of the scattering processes, and its value for a dynamical cold disk was found to be $8.0pm1.2~mathrm{km~s^{-1}}$. $S_2$ also increases linearly with respect to metallicity, which indicates that radial migration is correlated to the metallicity gradient. On the other hand, the rotational velocity of the Sun around the Galactic center has no clear correlation with ages or metallicities of stars used in the estimation.
167 - Jia-Cheng Liu , Yi Xie , Zi Zhu 2013
Accelerations of both the solar system barycenter (SSB) and stars in the Milky Way cause a systematic observational effect on the stellar proper motions, which was first studied in the early 1990s and developed by J. Kovalevsky (aberration in proper motions, 2003, A&A, 404, 743). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center. We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. Based on the theoretical developments, we show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Within 200 pc from the Galactic center, the systematic proper motion can reach an amplitude larger than 1000 uas/yr by applying a flat rotation curve. With a more realistic rotation curve which is linearly rising in the core region of the Galaxy, the aberrational proper motions are limited up to about 150 uas/yr. Then we investigate the applicability of the theoretical expressions concerning the aberrational proper motions, especially for those stars with short period orbits. If the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. The aberrational effect under consideration is small but not negligible with high-accurate astrometry in the future, particularly in constructing the Gaia celestial reference system realized by Galactic stars.
136 - Jia-Cheng Liu , Zi Zhu , 2011
The definition of the Galactic coordinate system was announced by the IAU Sub-Commission 33b on behalf of the IAU in 1958. For more than 50 years the definition of the Galactic coordinate system has remained unchanged from this IAU1958 version. On th e basis of deep and all-sky catalogs, the position of the Galactic plane can be revised and updated definitions of the Galactic coordinate systems can be proposed. We re-determine the position of the Galactic plane based on modern large catalogs, such as the Two Micron All-Sky Survey (2MASS) and the SPECFIND v2.0. This paper also aims to propose a possible definition of the optimal Galactic coordinate system by adopting the ICRS position of the Sgr A* at the Galactic center. The near-infrared 2MASS point source catalog and the SPECFIND v2.0 catalog of radio continuum spectra are used to determine the mean position of the Galactic plane on the celestial sphere. By fitting the data to an ideal Galactic equator, the parameters defining the Galactic coordinate system are obtained. We find that the obliquity of the Galactic equator on the ICRS principal plane is about $0.4^circ$ (2MASS) and $0.6^circ$ (SPECFIND v2.0) larger than the J2000.0 value, which is widely used in coordinate transformations between the equatorial $(alpha, delta)$ and the Galactic $(ell, b)$. Depending on the adopted parameters, data, and methods, the largest difference between the resulting Galactic coordinate systems is several arcminutes. We derive revised transformation matrices and parameters describing the orientation of the Galactic coordinate systems in the ICRS at the 1 milli-arcsecond level to match the precision of modern observations. For practical applications, we propose that a revised definition of the Galactic coordinate system should be required in the near future.
Initially defined by the IAU in 1958, the galactic coordinate system was thereafter in 1984 transformed from the B1950.0 FK4-based system to the J2000.0 FK5-based system. In 1994, the IAU recommended that the dynamical reference system FK5 be replace d by the ICRS, which is a kinematical non-rotating system defined by a set of remote radio sources. However the definition of the galactic coordinate system was not updated. We consider that the present galactic coordinates may be problematic due to the unrigorous transformation method from the FK4 to the FK5, and due to the non-inertiality of the FK5 system with respect to the ICRS. This has led to some confusions in applications of the galactic coordinates. We tried to find the transformation matrix in the framework of the ICRS after carefully investigating the definition of the galactic coordinate system and transformation procedures, however we could not find a satisfactory galactic coordinate system that is connected steadily to the ICRS. To avoid unnecessary misunderstandings, we suggest to re-consider the definition of the galactic coordinate system which should be directly connected with the ICRS for high precise observation at micro-arcsecond level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا