ترغب بنشر مسار تعليمي؟ اضغط هنا

151 - Song He , Zhuo-Yu Xian 2021
We study the $Tbar T$ deformation on a multi-quantum mechanical systems. By introducing the dynamical coordinate transformation, we obtain the deformed theory as well as the solution. We further study the thermo-field-double state under the $Tbar T$ deformation on these systems, including conformal quantum mechanical system, the Sachdev-Ye-Kitaev model, and the model satisfying Eigenstate Thermalization Hypothesis. We find common regenesis phenomena where the signal injected into one local system can regenerate from the other local system. From the bulk picture, we study the deformation on Jackiw-Teitelboim gravity governed by Schwarzian action and find that the regenesis phenomena here are not related to the causal structure of semi-classical wormhole.
We study the information paradox for the eternal black hole with charges on a doubly-holographic model in general dimensions, where the charged black hole on a Planck brane is coupled to the baths on the conformal boundaries. In the case of weak tens ion, the brane can be treated as a probe such that its backreaction to the bulk is negligible. We analytically calculate the entanglement entropy of the radiation and obtain the Page curve with the presence of an island on the brane. For the near-extremal black holes, the growth rate is linear in the temperature. Taking both Dvali-Gabadadze-Porrati term and nonzero tension into account, we obtain the numerical solution with backreaction in four-dimensional spacetime and find the quantum extremal surface at $t=0$. To guarantee that a Page curve can be obtained in general cases, we propose two strategies to impose enough degrees of freedom on the brane such that the black hole information paradox can be properly described by the doubly-holographic setup.
The thermalization process of the holographic entanglement entropy (HEE) of an annular domain is investigated over the Vaidya-AdS geometry. We numerically determine the Hubeny-Rangamani-Takayanagi (HRT) surface which may be a hemi-torus or two disks, depending on the ratio of the inner radius to the outer radius of the annulus. More importantly, for some fixed ratio of two radii, it undergoes a phase transition or double phase transitions from a hemi-torus configuration to a two-disk configuration, or vice versa, during the thermalization. The occurrence of various phase transitions is determined by the ratio of two radii of the annulus. The rate of entanglement growth is also investigated during the thermal quench. The local maximal rate of entanglement growth occurs in the region with double phase transitions. Finally, if the quench process is fairly slow which may be controlled by the thickness of null shell, the region with double phase transitions vanishes.
170 - Zhuo-Yu Xian , Long Zhao 2019
In classical thermodynamics, heat cannot spontaneously pass from a colder system to a hotter system, which is called the thermodynamic arrow of time. However, if the initial states are entangled, the direction of the thermodynamic arrow of time may n ot be guaranteed. Here we take the thermofield double state at $0+1$ dimension as the initial state and assume its gravity duality to be the eternal black hole in AdS$_2$ space. We make the temperature difference between the two sides by changing the Hamiltonian. We turn on proper interaction between the two sides and calculate the changes in energy and entropy. The energy transfer, as well as the thermodynamic arrow of time, are mainly determined by the competition between two channels: thermal diffusion and anomalous heat flow. The former is not related to the wormhole and obeys the thermodynamic arrow of time; the latter is related to the wormhole and reverses the thermodynamic arrow of time, i.e. transferring energy from the colder side to the hotter side at the cost of entanglement consumption. Finally, we find that the thermal diffusion wins the competition, and the whole thermodynamic arrow of time has not been reversed.
This paper accompanies with our recent work on quantum error correction (QEC) and entanglement spectrum (ES) in tensor networks (arXiv:1806.05007). We propose a general framework for planar tensor network state with tensor constraints as a model for $AdS_3/CFT_2$ correspondence, which could be viewed as a generalization of hyperinvariant tensor networks recently proposed by Evenbly. We elaborate our proposal on tensor chains in a tensor network by tiling $H^2$ space and provide a diagrammatical description for general multi-tensor constraints in terms of tensor chains, which forms a generalized greedy algorithm. The behavior of tensor chains under the action of greedy algorithm is investigated in detail. In particular, for a given set of tensor constraints, a critically protected (CP) tensor chain can be figured out and evaluated by its average reduced interior angle. We classify tensor networks according to their ability of QEC and the flatness of ES. The corresponding geometric description of critical protection over the hyperbolic space is also given.
A sort of planar tensor networks with tensor constraints is investigated as a model for holography. We study the greedy algorithm generated by tensor constraints and propose the notion of critical protection (CP) against the action of greedy algorith m. For given tensor constraints, a CP tensor chain can be defined. We further find that the ability of quantum error correction (QEC), the non-flatness of entanglement spectrum (ES) and the correlation function can be quantitatively evaluated by the geometric structure of CP tensor chain. Four classes of tensor networks with different properties of entanglement is discussed. Thanks to tensor constraints and CP, the correlation function is reduced into a bracket of Matrix Production State and the result agrees with the one in conformal field theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا