ترغب بنشر مسار تعليمي؟ اضغط هنا

113 - Tao Luo , Zheng Ma , Zhiwei Wang 2021
Deep neural network (DNN) usually learns the target function from low to high frequency, which is called frequency principle or spectral bias. This frequency principle sheds light on a high-frequency curse of DNNs -- difficult to learn high-frequency information. Inspired by the frequency principle, a series of works are devoted to develop algorithms for overcoming the high-frequency curse. A natural question arises: what is the upper limit of the decaying rate w.r.t. frequency when one trains a DNN? In this work, our theory, confirmed by numerical experiments, suggests that there is a critical decaying rate w.r.t. frequency in DNN training. Below the upper limit of the decaying rate, the DNN interpolates the training data by a function with a certain regularity. However, above the upper limit, the DNN interpolates the training data by a trivial function, i.e., a function is only non-zero at training data points. Our results indicate a better way to overcome the high-frequency curse is to design a proper pre-condition approach to shift high-frequency information to low-frequency one, which coincides with several previous developed algorithms for fast learning high-frequency information. More importantly, this work rigorously proves that the high-frequency curse is an intrinsic difficulty of DNNs.
In the present paper, we show that given a compact Kahler manifold $(X,omega)$ with a Kahler metric $omega$, and a complex submanifold $Vsubset X$ of positive dimension, if $V$ has a holomorphic retraction structure in $X$, then any quasi-plurisubhar monic function $varphi$ on $V$ such that $omega|_V+sqrt{-1}partialbarpartialvarphigeq varepsilonomega|_V$ with $varepsilon>0$ can be extended to a quasi-plurisubharmonic function $Phi$ on $X$, such that $omega+sqrt{-1}partialbarpartial Phigeq varepsilonomega$ for some $varepsilon>0$. This is an improvement of results in cite{WZ20}. Examples satisfying the assumption that there exists a holomorphic retraction structure contain product manifolds, thus contains many compact Kahler manifolds which are not necessarily projective.
Kagome superconductors with Tc up to 7K have been discovered over 40 years. Recently, unconventional chiral charge order has been reported in kagome superconductor KV3Sb5, with an ordering temperature of one order of magnitude higher than the TC. How ever, the chirality of the charge order has not been reported in the cousin kagome superconductor CsV3Sb5, and the electronic nature of the chirality remains elusive. In this letter, we report the observation of electronic chiral charge order in CsV3Sb5 via scanning tunneling microscopy (STM). We observe a 2x2 charge modulation and a 1x4 superlattice in both topographic data and tunneling spectroscopy. 2x2 charge modulation is highly anticipated as a charge order by fundamental kagome lattice models at van Hove filling, and is shown to exhibit intrinsic chirality. We find that the 1x4 superlattices forms various small domain walls, and can be a surface effect as supported by our first-principles calculations. Crucially, we find that the amplitude of the energy gap opened by the charge order exhibits real space modulations, and features 2x2 wave vectors with chirality, highlighting the electronic nature of the chiral charge order. STM study at 0.4K reveals a superconducting energy gap with a gap size 2{Delta}=0.85meV, which estimates a moderate superconductivity coupling strength with 2{Delta}/kBTc=3.9. When further applying a c-axis magnetic field, vortex core bound states are observed within this gap, indicative of clean-limit superconductivity.
64 - Tao Luo , Zheng Ma , Zhiwei Wang 2020
A supervised learning problem is to find a function in a hypothesis function space given values on isolated data points. Inspired by the frequency principle in neural networks, we propose a Fourier-domain variational formulation for supervised learni ng problem. This formulation circumvents the difficulty of imposing the constraints of given values on isolated data points in continuum modelling. Under a necessary and sufficient condition within our unified framework, we establish the well-posedness of the Fourier-domain variational problem, by showing a critical exponent depending on the data dimension. In practice, a neural network can be a convenient way to implement our formulation, which automatically satisfies the well-posedness condition.
We have performed angle-resolved photoemission spectroscopy on EuIn2As2 which is predicted to be an axion insulator in the antiferromagnetic state. By utilizing soft-x-ray and vacuum-ultraviolet photons, we revealed a three-dimensional hole pocket ce ntered at the Gamma point of bulk Brillouin zone together with a heavily hole-doped surface state in the paramagnetic phase. Upon entering the antiferromagnetic phase, the band structure exhibits a marked reconstruction characterized by the emergence of a M-shaped bulk band near the Fermi level. The qualitative agreement with first-principles band-structure calculations suggests the occurrence of bulk-band inversion at the Gamma point in the antiferromagnetic phase. We suggest that EuIn2As2 provides a good opportunity to study the exotic quantum phases associated with possible axion-insulator phase.
Discrete event sequences are ubiquitous, such as an ordered event series of process interactions in Information and Communication Technology systems. Recent years have witnessed increasing efforts in detecting anomalies with discrete-event sequences. However, it still remains an extremely difficult task due to several intrinsic challenges including data imbalance issues, the discrete property of the events, and sequential nature of the data. To address these challenges, in this paper, we propose OC4Seq, a multi-scale one-class recurrent neural network for detecting anomalies in discrete event sequences. Specifically, OC4Seq integrates the anomaly detection objective with recurrent neural networks (RNNs) to embed the discrete event sequences into latent spaces, where anomalies can be easily detected. In addition, given that an anomalous sequence could be caused by either individual events, subsequences of events, or the whole sequence, we design a multi-scale RNN framework to capture different levels of sequential patterns simultaneously. Experimental results on three benchmark datasets show that OC4Seq consistently outperforms various representative baselines by a large margin. Moreover, through both quantitative and qualitative analysis, the importance of capturing multi-scale sequential patterns for event anomaly detection is verified.
We have performed high-resolution angle-resolved photoemission spectroscopy of ternary pnictide CaAuAs which is predicted to be a three-dimensional topological Dirac semimetal (TDS). By accurately determining the bulk-band structure, we have revealed the coexistence of three-dimensional and quasi-two-dimensional Fermi surfaces with dominant hole carriers. The band structure around the Brillouin-zone center is characterized by an energy overlap between hole and electron pockets, in excellent agreement with first-principles band-structure calculations. This indicates the occurrence of bulk-band inversion, supporting the TDS state in CaAuAs. Because of the high tunability in the chemical composition besides the TDS nature, CaAuAs provides a precious opportunity for investigating the quantum phase transition from TDS to other exotic topological phases.
Recently, neural network based dialogue systems have become ubiquitous in our increasingly digitalized society. However, due to their inherent opaqueness, some recently raised concerns about using neural models are starting to be taken seriously. In fact, intentional or unintentional behaviors could lead to a dialogue system to generate inappropriate responses. Thus, in this paper, we investigate whether we can learn to craft input sentences that result in a black-box neural dialogue model being manipulated into having its outputs contain target words or match target sentences. We propose a reinforcement learning based model that can generate such desired inputs automatically. Extensive experiments on a popular well-trained state-of-the-art neural dialogue model show that our method can successfully seek out desired inputs that lead to the target outputs in a considerable portion of cases. Consequently, our work reveals the potential of neural dialogue models to be manipulated, which inspires and opens the door towards developing strategies to defend them.
The crystal structure of the candidate topological superconductor Cu$_x$Bi$_2$Se$_3$ was studied by single-crystal neutron diffraction using samples obtained by inserting the Cu dopant electrochemically. Neither structural refinements nor calculated scattering-density maps find a significant occupation of Cu at the intercalation site between the quintuple layers of Bi$_2$Se$_3$. Following Bragg reflection intensities as function of temperature, there is no signature of a structural phase transition between 295 and 2 K. However, the analysis of large sets of Bragg reflections indicates a small structural distortion breaking the rotational axis due to small displacements of the Bi ions.
Let $(X,omega)$ be a compact K{a}hler manifold with a K{a}hler form $omega$ of complex dimension $n$, and $Vsubset X$ is a compact complex submanifold of positive dimension $k<n$. Suppose that $V$ can be embedded in $X$ as a zero section of a holomor phic vector bundle or rank $n-k$ over $V$. Let $varphi$ be a strictly $omega|_V$-psh function on $V$. In this paper, we prove that there is a strictly $omega$-psh function $Phi$ on $X$, such that $Phi|_V=varphi$. This result gives a partial answer to an open problem raised by Collins-Tosatti and Dinew-Guedj-Zeriahi, for the case of K{a}hler currents. We also discuss possible extensions of Kahler currents in a big class.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا