ترغب بنشر مسار تعليمي؟ اضغط هنا

161 - Fangyun Wei , Yue Gao , Zhirong Wu 2021
Image-level contrastive representation learning has proven to be highly effective as a generic model for transfer learning. Such generality for transfer learning, however, sacrifices specificity if we are interested in a certain downstream task. We a rgue that this could be sub-optimal and thus advocate a design principle which encourages alignment between the self-supervised pretext task and the downstream task. In this paper, we follow this principle with a pretraining method specifically designed for the task of object detection. We attain alignment in the following three aspects: 1) object-level representations are introduced via selective search bounding boxes as object proposals; 2) the pretraining network architecture incorporates the same dedicated modules used in the detection pipeline (e.g. FPN); 3) the pretraining is equipped with object detection properties such as object-level translation invariance and scale invariance. Our method, called Selective Object COntrastive learning (SoCo), achieves state-of-the-art results for transfer performance on COCO detection using a Mask R-CNN framework. Code and models will be made available.
Contrastive visual pretraining based on the instance discrimination pretext task has made significant progress. Notably, recent work on unsupervised pretraining has shown to surpass the supervised counterpart for finetuning downstream applications su ch as object detection and segmentation. It comes as a surprise that image annotations would be better left unused for transfer learning. In this work, we investigate the following problems: What makes instance discrimination pretraining good for transfer learning? What knowledge is actually learned and transferred from these models? From this understanding of instance discrimination, how can we better exploit human annotation labels for pretraining? Our findings are threefold. First, what truly matters for the transfer is low-level and mid-level representations, not high-level representations. Second, the intra-category invariance enforced by the traditional supervised model weakens transferability by increasing task misalignment. Finally, supervised pretraining can be strengthened by following an exemplar-based approach without explicit constraints among the instances within the same category.
Recent progress in contrastive learning has revolutionized unsupervised representation learning. Concretely, multiple views (augmentations) from the same image are encouraged to map to the similar embeddings, while views from different images are pul led apart. In this paper, through visualizing and diagnosing classification errors, we observe that current contrastive models are ineffective at localizing the foreground object, limiting their ability to extract discriminative high-level features. This is due to the fact that view generation process considers pixels in an image uniformly. To address this problem, we propose a data-driven approach for learning invariance to backgrounds. It first estimates foreground saliency in images and then creates augmentations by copy-and-pasting the foreground onto a variety of backgrounds. The learning still follows the instance discrimination pretext task, so that the representation is trained to disregard background content and focus on the foreground. We study a variety of saliency estimation methods, and find that most methods lead to improvements for contrastive learning. With this approach (DiLo), significant performance is achieved for self-supervised learning on ImageNet classification, and also for object detection on PASCAL VOC and MSCOCO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا