ترغب بنشر مسار تعليمي؟ اضغط هنا

We synthesized three-dimensional nanoporous graphene films by a chemical vapor deposition method with nanoporous copper as a catalytic substrate. The resulting nanoporous graphene has the same average pore size as the underlying copper substrate. Our surface-enhanced Raman scattering (SERS) investigation indicates that the nanoporosity of graphene significantly improves the SERS efficiency of graphene as a substrate as compared to planar graphene substrates.
We report that graphene films with thickness ranging from 1 to 7 layers can be controllably synthesized on the surface of polycrystalline copper by a chemical vapour deposition method. The number of layers of graphene is controlled precisely by regul ating the flow ratio of CH4 and H2, the reaction pressure, the temperature and the reaction time. The synthesized graphene films were characterized by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, X-ray diffraction and Raman spectroscopy. In addition, the graphene films transferred from copper to other substrates are found to have a good optical transmittance that makes them suitable for transparent conductive materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا