ترغب بنشر مسار تعليمي؟ اضغط هنا

Generative modeling has recently shown great promise in computer vision, but it has mostly focused on synthesizing visually realistic images. In this paper, motivated by multi-task learning of shareable feature representations, we consider a novel pr oblem of learning a shared generative model that is useful across various visual perception tasks. Correspondingly, we propose a general multi-task oriented generative modeling (MGM) framework, by coupling a discriminative multi-task network with a generative network. While it is challenging to synthesize both RGB images and pixel-level annotations in multi-task scenarios, our framework enables us to use synthesized images paired with only weak annotations (i.e., image-level scene labels) to facilitate multiple visual tasks. Experimental evaluation on challenging multi-task benchmarks, including NYUv2 and Taskonomy, demonstrates that our MGM framework improves the performance of all the tasks by large margins, consistently outperforming state-of-the-art multi-task approaches.
We propose a novel task of joint few-shot recognition and novel-view synthesis: given only one or few images of a novel object from arbitrary views with only category annotation, we aim to simultaneously learn an object classifier and generate images of that type of object from new viewpoints. While existing work copes with two or more tasks mainly by multi-task learning of shareable feature representations, we take a different perspective. We focus on the interaction and cooperation between a generative model and a discriminative model, in a way that facilitates knowledge to flow across tasks in complementary directions. To this end, we propose bowtie networks that jointly learn 3D geometric and semantic representations with a feedback loop. Experimental evaluation on challenging fine-grained recognition datasets demonstrates that our synthesized images are realistic from multiple viewpoints and significantly improve recognition performance as ways of data augmentation, especially in the low-data regime. Code and pre-trained models are released at https://github.com/zpbao/bowtie_networks.
Deep learning model trained by imbalanced data may not work satisfactorily since it could be determined by major classes and thus may ignore the classes with small amount of data. In this paper, we apply deep learning based imbalanced data classifica tion for the first time to cellular macromolecular complexes captured by Cryo-electron tomography (Cryo-ET). We adopt a range of strategies to cope with imbalanced data, including data sampling, bagging, boosting, Genetic Programming based method and. Particularly, inspired from Inception 3D network, we propose a multi-path CNN model combining focal loss and mixup on the Cryo-ET dataset to expand the dataset, where each path had its best performance corresponding to each type of data and let the network learn the combinations of the paths to improve the classification performance. In addition, extensive experiments have been conducted to show our proposed method is flexible enough to cope with different number of classes by adjusting the number of paths in our multi-path model. To our knowledge, this work is the first application of deep learning methods of dealing with imbalanced data to the internal tissue classification of cell macromolecular complexes, which opened up a new path for cell classification in the field of computational biology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا