ترغب بنشر مسار تعليمي؟ اضغط هنا

Twenty-one new optical light curves, including five curves obtained in 2009 and sixteen curves detected from the AAVSO International Database spanning from 1977 to 2011, demonstrate 16 new primary minimum light times in the high state. Furthermore, s even newly found low-state transient events from 2006 to 2009 were discovered, consisting of five Gaussian-shaped events and two events with an exponential form with decay timescales of $<$0.005 days; these timescales are one order of magnitude shorter than those of previous X-ray flare events. In the state transition, two special events were detected: a disrupted event with an amplitude of $sim$ 2 mag and a duration of $sim$ 72 minutes and continuing R-band twin events larger than all known R-band flares detected in M-type red dwarfs. All 45 available high-state data points spanning over 35 yr were used to construct an updated O-C diagram of objectname{AM Herculis}, which clearly shows a significant sine-like variation with a period of 12-15 yr and an amplitude of 6-9 minutes. Using the inspected physical parameters of the donor star, the secular variation in the O-C diagram cannot be interpreted by any decided angular momentum loss mechanism, but can satisfy the condition $tau_{dot{rm M}_{2}}simeqtau_{rm KH}>>tau_{dot{rm R}_{rm 2}}$, which is required by numerical calculations of the secular evolution of cataclysmic variables. In order to explain the prominent periodic modulation, three plausible mechanisms - spot motion, the light travel-time effect, and magnetic active cycles - are discussed in detail.
Combining with our newest CCD times of light minimum of EM Cygni, all 45 available times of light minimum including 7 data with large scatters are compiled and the updated O-C analysis is made. The bestfit for the O-C diagram of EM Cygni is a quadrat ic-plus-sinusoidal fit. The secular orbital period decrease rate -2.5(pm 0.3)x10^{-11} s s^{-1} means that magnetic braking effect with a rate of mass loss via stellar wind, 2.3x10^{-10}Msunyr^{-1}, is needed for explaining the observed orbital period decrease. Moreover, for explaining the significant cyclical period change with a period of sim 17.74(pm 0.01)yr shown in the O-C diagram, magnetic activity cycles and light travel-time effect are discussed in detail. The O-C diagram of EM Cygni cannot totally rule the possibility of multi-periodic modulation out due to the gaps presented after 25000 cycles. Based on the hypothesis of a K-type third star in literature, light trave-time effect may be a more plausible explanation. However, the low orbital inclination of the third body (sim 7.4 degree) suggests that the hypothetic K-type third star may be captured by EM Cygni. But assuming the spectral contamination from a block of circumbinary material instead of a K-type third star, the third star may be a brown dwarf in case of the coplanar orbit with parent binary.
The two CCD photometries of the intermediate polar TV Columbae are made for obtaining the two updated eclipse timings with high precision. There is an interval time sim 17yr since the last mid-eclipse time observed in 1991. Thus, the new mid-eclipse times can offer an opportunity to check the previous orbital ephemerides. A calculation indicates that the orbital ephemeris derived by Augusteijn et al. (1994) should be corrected. Based on the proper linear ephemeris (Hellier, 1993), the new orbital period analysis suggests a cyclical period variation in the O-C diagram of TV Columbae. Using Applegates mechanism to explain the periodic oscillation in O-C diagram, the required energy is larger than that a M0-type star can afford over a complete variation period sim 31.0(pm 3.0)yr. Thus, the light travel-time effect indicates that the tertiary component in TV Columbae may be a dwarf with a low mass, which is near the mass lower limit sim 0.08Msun as long as the inclination of the third body high enough.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا