ترغب بنشر مسار تعليمي؟ اضغط هنا

As current Noisy Intermediate Scale Quantum (NISQ) devices suffer from decoherence errors, any delay in the instruction execution of quantum control microarchitecture can lead to the loss of quantum information and incorrect computation results. Henc e, it is crucial for the control microarchitecture to issue quantum operations to the Quantum Processing Unit (QPU) in time. As in classical microarchitecture, parallelism in quantum programs needs to be exploited for speedup. However, three challenges emerge in the quantum scenario: 1) the quantum feedback control can introduce significant pipeline stall latency; 2) timing control is required for all quantum operations; 3) QPU requires a deterministic operation supply to prevent the accumulation of quantum errors. In this paper, we propose a novel control microarchitecture design to exploit Circuit Level Parallelism (CLP) and Quantum Operation Level Parallelism (QOLP). Firstly, we develop a Multiprocessor architecture to exploit CLP, which supports dynamic scheduling of different sub-circuits. This architecture can handle parallel feedback control and minimize the potential overhead that disrupts the timing control. Secondly, we propose a Quantum Superscalar approach that exploits QOLP by efficiently executing massive quantum instructions in parallel. Both methods issue quantum operations to QPU deterministically. In the benchmark test of a Shor syndrome measurement, a six-core implementation of our proposal achieves up to 2.59$times$ speedup compared with a single core. For various canonical quantum computing algorithms, our superscalar approach achieves an average of 4.04$times$ improvement over a baseline design. Finally, We perform a simultaneous randomized benchmarking (simRB) experiment on a real QPU using the proposed microarchitecture for validation.
Shortcuts to adiabaticity (STA) are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespread applications in quantum technologies, and various STA protocols have been demonstrated in closed systems. However, realizing STA for open quantum systems has presented a greater challenge, due to complex controls required in existing proposals. Here we present the first experimental demonstration of STA for open quantum systems, using a superconducting circuit QED system consisting of two coupled bosonic oscillators and a transmon qubit. By applying a counterdiabatic driving pulse, we reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns. In addition, we propose and implement an optimal control protocol to achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our results pave the way for accelerating dynamics of open quantum systems and have potential applications in designing fast open-system protocols of physical and interdisciplinary interest, such as accelerating bioengineering and chemical reaction dynamics.
Qubit initialization is critical for many quantum algorithms and error correction schemes, and extensive efforts have been made to achieve this with high speed and efficiency. Here we experimentally demonstrate a fast and high fidelity reset scheme f or tunable superconducting qubits. A rapid decay channel is constructed by modulating the flux through a transmon qubit and realizing a swap between the qubit and its readout resonator. The residual excited population can be suppressed to 0.08% $pm$ 0.08% within 34 ns, and the scheme requires no additional chip architecture, projective measurements, or feedback loops. In addition, the scheme has negligible effects on neighboring qubits, and is therefore suitable for large-scale multi-qubit systems. Our method also offers a way of entangling the qubit state with an itinerant single photon, particularly useful in quantum communication and quantum network applications.
In a `shortcut-to-adiabaticity (STA) protocol, the counter-diabatic Hamiltonian, which suppresses the non-adiabatic transition of a reference `adiabatic trajectory, induces a quantum uncertainty of the work cost in the framework of quantum thermodyna mics. Following a theory derived recently [Funo et al 2017 Phys. Rev. Lett. 118 100602], we perform an experimental measurement of the STA work statistics in a high-quality superconducting Xmon qubit. Through the frozen-Hamiltonian and frozen-population techniques, we experimentally realize the two-point measurement of the work distribution for given initial eigenstates. Our experimental statistics verify (i) the conservation of the average STA work and (ii) the equality between the STA excess of work fluctuations and the quantum geometric tensor.
Based on a `shortcut-to-adiabaticity (STA) scheme, we theoretically design and experimentally realize a set of high-fidelity single-qubit quantum gates in a superconducting Xmon qubit system. Through a precise microwave control, the qubit is driven t o follow a fast `adiabatic trajectory with the assistance of a counter-diabatic field and the correction of derivative removal by adiabatic gates. The experimental measurements of quantum process tomography and interleaved randomized benchmarking show that the process fidelities of our STA quantum gates are higher than 94.9% and the gate fidelities are higher than 99.8%, very close to the state-of-art gate fidelity of 99.9%. An alternate of high-fidelity quantum gates is successfully achieved under the STA protocol.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا