ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of a quantum many-body system at finite temperatures is crucially important but quite challenging. Here we present an experimentally feasible quantum algorithm assisted with continuous-variable for simulating quantum systems at finite temp eratures. Our algorithm has a time complexity scaling polynomially with the inverse temperature and the desired accuracy. We demonstrate the quantum algorithm by simulating finite temperature phase diagram of the Kitaev model. It is found that the important crossover phase diagram of the Kitaev ring can be accurately simulated by a quantum computer with only a few qubits and thus the algorithm may be readily implemented on current quantum processors. We further propose a protocol implementable with superconducting or trapped ion quantum computers.
In order to exploit quantum advantages, quantum algorithms are indispensable for operating machine learning with quantum computers. We here propose an intriguing hybrid approach of quantum information processing for quantum linear regression, which u tilizes both discrete and continuous quantum variables, in contrast to existing wisdoms based solely upon discrete qubits. In our framework, data information is encoded in a qubit system, while information processing is tackled using auxiliary continuous qumodes via qubit-qumode interactions. Moreover, it is also elaborated that finite squeezing is quite helpful for efficiently running the quantum algorithms in realistic setup. Comparing with an all-qubit approach, the present hybrid approach is more efficient and feasible for implementing quantum algorithms, still retaining exponential quantum speed-up.
We present a feasible protocol to mimic topological Weyl semimetal phase in a small one-dimensional circuit-QED lattice. By modulating the photon hopping rates and on-site photon frequencies in parametric spaces, we demonstrate that the momentum spac e of this one-dimensional lattice model can be artificially mapped to three dimensions accompanied by the emergence of topological Weyl semimetal phase. Furthermore, via a lattice-based cavity input-output process, we show that all the essential topological features of Weyl semimetal phase, including the topological charge associated with each Weyl point and the open Fermi arcs, can be unambiguously detected in a circuit with four dissipative resonators by measuring the reflection spectra. These remarkable features may open a new prospect in using well-controlled small quantum lattices to mimic and study topological phases.
We propose an experimental scheme to simulate the fractionalization of particle number by using a one-dimensional spin-orbit coupled ultracold fermionic gas. The wanted spin-orbit coupling, a kink-like potential, and a conjugation-symmetry-breaking m ass term are properly constructed by laser-atom interactions, leading to an effective low-energy relativistic Dirac Hamiltonian with a topologically nontrivial background field. The designed system supports a localized soliton excitation with a fractional particle number that is generally irrational and experimentally tunable, providing a direct realization of the celebrated generalized-Su-Schrieffer-Heeger model. In addition, we elaborate on how to detect the induced soliton mode with the FPN in the system.
We propose a scheme to implement quantum computation in decoherence-free subspace with superconducting devices inside a cavity by unconventional geometric manipulation. Universal single-qubit gates in encoded qubit can be achieved with cavity assiste d interaction. A measurement-based two-qubit Controlled-Not gate is produced with parity measurements assisted by an auxiliary superconducting device and followed by prescribed single-qubit gates. The measurement of currents on two parallel devices can realize a projective measurement, which is equivalent to the parity measurement on the involved devices.
A two-component fermion model with conventional two-body interactions was recently shown to have anyonic excitations. We here propose a scheme to physically implement this model by transforming each chain of two two-component fermions to the two capa citively coupled chains of superconducting devices. In particular, we elaborate how to achieve the wanted operations to create and manipulate the topological quantum states, providing an experimentally feasible scenario to access the topological memory and to build the anyonic interferometry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا