ترغب بنشر مسار تعليمي؟ اضغط هنا

74 - Xiankai Lu , Zheng Fang , Tao Xu 2014
In object recognition, Fisher vector (FV) representation is one of the state-of-art image representations ways at the expense of dense, high dimensional features and increased computation time. A simplification of FV is attractive, so we propose Spar se Fisher vector (SFV). By incorporating locality strategy, we can accelerate the Fisher coding step in image categorization which is implemented from a collective of local descriptors. Combining with pooling step, we explore the relationship between coding step and pooling step to give a theoretical explanation about SFV. Experiments on benchmark datasets have shown that SFV leads to a speedup of several-fold of magnitude compares with FV, while maintaining the categorization performance. In addition, we demonstrate how SFV preserves the consistence in representation of similar local features.
The Klein-Gordon equation in the presence of a spatially one-dimensional Hulthen potential is solved exactly and the scattering solutions are obtained in terms of hypergeometric functions. The transmission coefficient is derived by the matching condi tions on the wavefunctions and the condition for the existence of transmission resonances are investigated. It is shown how the zero-reflection condition depends on the shape of the potential.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا