ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous wireless information and power transfer (SWIPT) has recently gathered much research interest from both academia and industry as a key enabler of energy harvesting Internet-of-things (IoT) networks. Due to a number of growing use cases of such networks, it is important to study their performance limits from the perspective of physical layer security (PLS). With this intent, this work aims to provide a novel analysis of the ergodic secrecy capacity of a SWIPT system is provided for Rician and Nakagami-m faded communication links. For a realistic evaluation of the system, the imperfections of channel estimations for different receiver designs of the SWIPT-based IoT systems have been taken into account. Subsequently, the closedform expressions of the ergodic secrecy capacities for the considered scenario are provided and, then, validated through extensive simulations. The results indicate that an error ceiling appears due to imperfect channel estimation at high values of signal-to-noise ratio (SNR). More importantly, the secrecy capacity under different channel conditions stops increasing beyond a certain limit, despite an increase of the main link SNR. The in-depth analysis of secrecy-energy trade-off has also been performed and a comparison has been provided for imperfect and perfect channel estimation cases. As part of the continuous evolution of IoT networks, the results provided in this work can help in identifying the secrecy limits of IoT networks in the presence of multiple eavesdroppers.
Non-orthogonal multiple access (NOMA) is considered to be one of the best candidates for future networks due to its ability to serve multiple users using the same resource block. Although early studies have focused on transmission reliability and ene rgy efficiency, recent works are considering cooperation among the nodes. The cooperative NOMA techniques allow the user with a better channel (near user) to act as a relay between the source and the user experiencing poor channel (far user). This paper considers the link security aspect of energy harvesting cooperative NOMA users. In particular, the near user applies the decode-and-forward (DF) protocol for relaying the message of the source node to the far user in the presence of an eavesdropper. Moreover, we consider that all the devices use power-splitting architecture for energy harvesting and information decoding. We derive the analytical expression of intercept probability. Next, we employ deep learning based optimization to find the optimal power allocation factor. The results show the robustness and superiority of deep learning optimization over conventional iterative search algorithm.
Mobility is the backbone of urban life and a vital economic factor in the development of the world. Rapid urbanization and the growth of mega-cities is bringing dramatic changes in the capabilities of vehicles. Innovative solutions like autonomy, ele ctrification, and connectivity are on the horizon. How, then, we can provide ubiquitous connectivity to the legacy and autonomous vehicles? This paper seeks to answer this question by combining recent leaps of innovation in network virtualization with remarkable feats of wireless communications. To do so, this paper proposes a novel paradigm called the Internet of autonomous vehicles (IoAV). We begin painting the picture of IoAV by discussing the salient features, and applications of IoAV which is followed by a detailed discussion on the key enabling technologies. Next, we describe the proposed layered architecture of IoAV and uncover some critical functions of each layer. This is followed by the performance evaluation of IoAV which shows the significant advantage of the proposed architecture in terms of transmission time and energy consumption. Finally, to best capture the benefits of IoAV, we enumerate some social and technological challenges and explain how some unresolved issues can disrupt the widespread use of autonomous vehicles in the future.
It is widely acknowledged that the forthcoming 5G architecture will be highly heterogeneous and deployed with a high degree of density. These changes over the current 4G bring many challenges on how to achieve an efficient operation from the network management perspective. In this article, we introduce a revolutionary vision of the future 5G wireless networks, in which the network is no longer limited by hardware or even software. Specifically, by the idea of virtualizing the wireless networks, which has recently gained increasing attention, we introduce the Everything-as-a-Service (XaaS) taxonomy to light the way towards designing the service-oriented wireless networks. The concepts, challenges along with the research opportunities for realizing XaaS in wireless networks are overviewed and discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا