ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-hoc interpretation aims to explain a trained model and reveal how the model arrives at a decision. Though research on post-hoc interpretations has developed rapidly, one growing pain in this field is the difficulty in evaluating interpretations. There are some crucial logic traps behind existing evaluation methods, which are ignored by most works. In this opinion piece, we summarize four kinds evaluation methods and point out the corresponding logic traps behind them. We argue that we should be clear about these traps rather than ignore them and draw conclusions assertively.
119 - Xinzi He , Jia Guo , Xuzhe Zhang 2021
Unsupervised learning-based medical image registration approaches have witnessed rapid development in recent years. We propose to revisit a commonly ignored while simple and well-established principle: recursive refinement of deformation vector field s across scales. We introduce a recursive refinement network (RRN) for unsupervised medical image registration, to extract multi-scale features, construct normalized local cost correlation volume and recursively refine volumetric deformation vector fields. RRN achieves state of the art performance for 3D registration of expiratory-inspiratory pairs of CT lung scans. On DirLab COPDGene dataset, RRN returns an average Target Registration Error (TRE) of 0.83 mm, which corresponds to a 13% error reduction from the best result presented in the leaderboard. In addition to comparison with conventional methods, RRN leads to 89% error reduction compared to deep-learning-based peer approaches.
122 - Yizhe Zhang , Siqi Sun , Xiang Gao 2021
Recent advances in large-scale pre-training such as GPT-3 allow seemingly high quality text to be generated from a given prompt. However, such generation systems often suffer from problems of hallucinated facts, and are not inherently designed to inc orporate useful external information. Grounded generation models appear to offer remedies, but their training typically relies on rarely-available parallel data where corresponding information-relevant documents are provided for context. We propose a framework that alleviates this data constraint by jointly training a grounded generator and document retriever on the language model signal. The model learns to reward retrieval of the documents with the highest utility in generation, and attentively combines them using a Mixture-of-Experts (MoE) ensemble to generate follow-on text. We demonstrate that both generator and retriever can take advantage of this joint training and work synergistically to produce more informative and relevant text in both prose and dialogue generation.
In this paper we report an experiment that verifies an atomic-ensemble quantum memory via a measurement-device-independent scheme. A single photon generated via Rydberg blockade in one atomic ensemble is stored in another atomic ensemble via electrom agnetically induced transparency. After storage for a long duration, this photon is retrieved and interfered with a second photon to perform joint Bell-state measurement (BSM). Quantum state for each photon is chosen based on a quantum random number generator respectively in each run. By evaluating correlations between the random states and BSM results, we certify that our memory is genuinely entanglement-preserving.
Most 3D shape completion approaches rely heavily on partial-complete shape pairs and learn in a fully supervised manner. Despite their impressive performances on in-domain data, when generalizing to partial shapes in other forms or real-world partial scans, they often obtain unsatisfactory results due to domain gaps. In contrast to previous fully supervised approaches, in this paper we present ShapeInversion, which introduces Generative Adversarial Network (GAN) inversion to shape completion for the first time. ShapeInversion uses a GAN pre-trained on complete shapes by searching for a latent code that gives a complete shape that best reconstructs the given partial input. In this way, ShapeInversion no longer needs paired training data, and is capable of incorporating the rich prior captured in a well-trained generative model. On the ShapeNet benchmark, the proposed ShapeInversion outperforms the SOTA unsupervised method, and is comparable with supervised methods that are learned using paired data. It also demonstrates remarkable generalization ability, giving robust results for real-world scans and partial inputs of various forms and incompleteness levels. Importantly, ShapeInversion naturally enables a series of additional abilities thanks to the involvement of a pre-trained GAN, such as producing multiple valid complete shapes for an ambiguous partial input, as well as shape manipulation and interpolation.
Building cross-lingual voice conversion (VC) systems for multiple speakers and multiple languages has been a challenging task for a long time. This paper describes a parallel non-autoregressive network to achieve bilingual and code-switched voice con version for multiple speakers when there are only mono-lingual corpora for each language. We achieve cross-lingual VC between Mandarin speech with multiple speakers and English speech with multiple speakers by applying bilingual bottleneck features. To boost voice cloning performance, we use an adversarial speaker classifier with a gradient reversal layer to reduce the source speakers information from the output of encoder. Furthermore, in order to improve speaker similarity between reference speech and converted speech, we adopt an embedding consistency loss between the synthesized speech and its natural reference speech in our network. Experimental results show that our proposed method can achieve high quality converted speech with mean opinion score (MOS) around 4. The conversion system performs well in terms of speaker similarity for both in-set speaker conversion and out-set-of one-shot conversion.
Large pretrained generative models like GPT-3 often suffer from hallucinating non-existent or incorrect content, which undermines their potential merits in real applications. Existing work usually attempts to detect these hallucinations based on a co rresponding oracle reference at a sentence or document level. However ground-truth references may not be readily available for many free-form text generation applications, and sentence- or document-level detection may fail to provide the fine-grained signals that would prevent fallacious content in real time. As a first step to addressing these issues, we propose a novel token-level, reference-free hallucination detection task and an associated annotated dataset named HaDes (HAllucination DEtection dataSet). To create this dataset, we first perturb a large number of text segments extracted from English language Wikipedia, and then verify these with crowd-sourced annotations. To mitigate label imbalance during annotation, we utilize an iterative model-in-loop strategy. We conduct comprehensive data analyses and create multiple baseline models.
The design of better automated dialogue evaluation metrics offers the potential of accelerate evaluation research on conversational AI. However, existing trainable dialogue evaluation models are generally restricted to classifiers trained in a purely supervised manner, which suffer a significant risk from adversarial attacking (e.g., a nonsensical response that enjoys a high classification score). To alleviate this risk, we propose an adversarial training approach to learn a robust model, ATT (Adversarial Turing Test), that discriminates machine-generated responses from human-written replies. In contrast to previous perturbation-based methods, our discriminator is trained by iteratively generating unrestricted and diverse adversarial examples using reinforcement learning. The key benefit of this unrestricted adversarial training approach is allowing the discriminator to improve robustness in an iterative attack-defense game. Our discriminator shows high accuracy on strong attackers including DialoGPT and GPT-3.
150 - Zhe Zhou , Bizhao Shi , Zhe Zhang 2021
In recent years, Graph Neural Networks (GNNs) appear to be state-of-the-art algorithms for analyzing non-euclidean graph data. By applying deep-learning to extract high-level representations from graph structures, GNNs achieve extraordinary accuracy and great generalization ability in various tasks. However, with the ever-increasing graph sizes, more and more complicated GNN layers, and higher feature dimensions, the computational complexity of GNNs grows exponentially. How to inference GNNs in real time has become a challenging problem, especially for some resource-limited edge-computing platforms. To tackle this challenge, we propose BlockGNN, a software-hardware co-design approach to realize efficient GNN acceleration. At the algorithm level, we propose to leverage block-circulant weight matrices to greatly reduce the complexity of various GNN models. At the hardware design level, we propose a pipelined CirCore architecture, which supports efficient block-circulant matrices computation. Basing on CirCore, we present a novel BlockGNN accelerator to compute various GNNs with low latency. Moreover, to determine the optimal configurations for diverse deployed tasks, we also introduce a performance and resource model that helps choose the optimal hardware parameters automatically. Comprehensive experiments on the ZC706 FPGA platform demonstrate that on various GNN tasks, BlockGNN achieves up to $8.3times$ speedup compared to the baseline HyGCN architecture and $111.9times$ energy reduction compared to the Intel Xeon CPU platform.
Continual learning has become increasingly important as it enables NLP models to constantly learn and gain knowledge over time. Previous continual learning methods are mainly designed to preserve knowledge from previous tasks, without much emphasis o n how to well generalize models to new tasks. In this work, we propose an information disentanglement based regularization method for continual learning on text classification. Our proposed method first disentangles text hidden spaces into representations that are generic to all tasks and representations specific to each individual task, and further regularizes these representations differently to better constrain the knowledge required to generalize. We also introduce two simple auxiliary tasks: next sentence prediction and task-id prediction, for learning better generic and specific representation spaces. Experiments conducted on large-scale benchmarks demonstrate the effectiveness of our method in continual text classification tasks with various sequences and lengths over state-of-the-art baselines. We have publicly released our code at https://github.com/GT-SALT/IDBR.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا