ترغب بنشر مسار تعليمي؟ اضغط هنا

190 - Hailiang Liu , Zhaoyang Yin 2009
This paper is concerned with a class of nonlocal dispersive models -- the $theta$-equation proposed by H. Liu [ On discreteness of the Hopf equation, {it Acta Math. Appl. Sin.} Engl. Ser. {bf 24}(3)(2008)423--440]: $$ (1-partial_x^2)u_t+(1-thetaparti al_x^2)(frac{u^2}{2})_x =(1-4theta)(frac{u_x^2}{2})_x, $$ including integrable equations such as the Camassa-Holm equation, $theta=1/3$, and the Degasperis-Procesi equation, $theta=1/4$, as special models. We investigate both global regularity of solutions and wave breaking phenomena for $theta in mathbb{R}$. It is shown that as $theta$ increases regularity of solutions improves: (i) $0 <theta < 1/4$, the solution will blow up when the momentum of initial data satisfies certain sign conditions; (ii) $1/4 leq theta < 1/2$, the solution will blow up when the slope of initial data is negative at one point; (iii) ${1/2} leq theta leq 1$ and $theta=frac{2n}{2n-1}, nin mathbb{N}$, global existence of strong solutions is ensured. Moreover, if the momentum of initial data has a definite sign, then for any $thetain mathbb{R}$ global smoothness of the corresponding solution is proved. Proofs are either based on the use of some global invariants or based on exploration of favorable sign conditions of quantities involving solution derivatives. Existence and uniqueness results of global weak solutions for any $theta in mathbb{R}$ are also presented. For some restricted range of parameters results here are equivalent to those known for the $b-$equations [e.g. J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the b-equation, {it J. reine angew. Math.}, {bf 624} (2008)51--80.]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا