ترغب بنشر مسار تعليمي؟ اضغط هنا

162 - Kuang Zhang , Gang Chen , 2013
In this paper we explore the spin-orbit-induced bound state and molecular signature of the degenerate Fermi gas in a narrow Feshbach resonance based on a generalized two-channel model. Without the atom-atom interactions, only one bound state can be f ound even if spin-orbit coupling exists. Moreover, the corresponding bound-state energy depends strongly on the strength of spin-orbit coupling, but is influenced slightly by its type. In addition, we find that when increasing the strength of spin-orbit coupling, the critical point at which the molecular fraction vanishes shifts from zero to the negative detuning. In the weak spin-orbit coupling, this shifting is proportional to the square of its strength. Finally, we also show that the molecular fraction can be well controlled by spin-orbit coupling.
197 - Hai-Jun Zhang , Gang Xu , Xi Dai 2008
The Fermi surfaces (FS) of LaOFeAs (in $k_z$=0 plane) consist of two hole-type circles around $Gamma$ point, which do not touch each other, and two electron-type co-centered ellipses around M point, which are degenerate along the M-X line. By first-p rinciples calculations, here we show that additional degeneracy exists for the two electron-type FS, and the crucial role of F-doping and pressure is to enhance this orbital degeneracy. It is suggested that the inter-orbital fluctuation is the key point to understand the unconventional superconductivity in these materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا