ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a systematic investigation of the role and importance of excitonic effects on the optical properties of transitions metal oxide perovskites. A representative set of fourteen compounds has been selected, including 3$d$ (SrTiO$_3$, LaScO$_3$ , LaTiO$_3$, LaVO$_3$, LaCrO$_3$, LaMnO$_3$, LaFeO$_3$ and SrMnO$_3$), 4$d$ (SrZrO$_3$, SrTcO$_3$ and Ca$_2$RuO$_4$) and 5$d$ (SrHfO$_3$, KTaO$_3$ and NaOsO$_3$) perovskites, covering a band gap ranging from 0.1 eV to 6.1 eV and exhibiting different electronic, structural and magnetic properties. Optical conductivities and optical transitions including electron-hole interactions are calculated through the solution of the Bethe-Salpeter equation (BSE) with quasi-particle energies evaluated by single-shot $G_0W_0$ approximation. The exciton binding energies are computed by means of a model-BSE (mBSE), carefully benchmarked against the full BSE method, in order to obtain well-converged results in terms of k-point sampling. The predicted results are compared with available measured data, with an overall satisfactory agreement between theory and experiment.
In systems where electrons form both dispersive bands and small local spins, we show that changes of the spin configuration can tune the bands through a Lifshitz transition, resulting in a continuous metal-insulator transition associated with a progr essive change of the Fermi surface topology. In contrast to a Mott-Hubbard and Slater pictures, this spin-driven Lifshitz transition appears in systems with small electron-electron correlation and large hybridization. We show that this situation is realized in 5$d$ distorted perovskites with an half-filled $t_{2g}$ bands such as NaOsO$_3$, where the strong $p-d$ hybridization reduces the local moment, and spin-orbit coupling causes a large renormalization of the electronic mobility. This weakens the role of electronic correlations and drives the system towards an itinerant magnetic regime which enables spin-fluctuations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا